Min(phi) over symmetries of the knot is: [-4,-2,0,1,2,3,0,3,2,2,5,1,1,1,2,0,1,2,1,1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.222'] |
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K2**2 + 2*K2 + 2*K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.168', '6.222', '6.288'] |
Outer characteristic polynomial of the knot is: t^7+91t^5+61t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.222'] |
2-strand cable arrow polynomial of the knot is: -144*K1**4 + 32*K1**3*K2*K3 - 352*K1**3*K3 - 128*K1**2*K2**4 + 608*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3264*K1**2*K2**2 - 544*K1**2*K2*K4 + 5640*K1**2*K2 - 304*K1**2*K3**2 - 96*K1**2*K3*K5 - 32*K1**2*K4**2 - 5740*K1**2 + 864*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1504*K1*K2**2*K3 - 160*K1*K2**2*K5 - 640*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6672*K1*K2*K3 + 1472*K1*K3*K4 + 368*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 224*K2**4*K4 - 1360*K2**4 + 64*K2**3*K3*K5 - 32*K2**3*K6 + 160*K2**2*K3**2*K4 - 1072*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 328*K2**2*K4**2 + 2272*K2**2*K4 - 4304*K2**2 - 32*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 864*K2*K3*K5 + 224*K2*K4*K6 - 64*K3**2*K4**2 + 8*K3**2*K6 - 2480*K3**2 + 24*K3*K4*K7 - 8*K4**4 - 1088*K4**2 - 268*K5**2 - 72*K6**2 + 4502 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.222'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71456', 'vk6.71507', 'vk6.71517', 'vk6.71978', 'vk6.71990', 'vk6.72033', 'vk6.72043', 'vk6.73222', 'vk6.73233', 'vk6.73253', 'vk6.73266', 'vk6.73656', 'vk6.73676', 'vk6.75145', 'vk6.75161', 'vk6.77085', 'vk6.77133', 'vk6.77136', 'vk6.77424', 'vk6.77426', 'vk6.78080', 'vk6.78089', 'vk6.78113', 'vk6.78125', 'vk6.81287', 'vk6.81532', 'vk6.81546', 'vk6.85467', 'vk6.85469', 'vk6.86881', 'vk6.87727', 'vk6.89512'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U3O6U1U5U6U2U4 |
R3 orbit | {'O1O2O3O4O5U3O6U1U5U6U2U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U2U4U6U1U5O6U3 |
Gauss code of K* | O1O2O3O4O5U1U4U6U5U2O6U3 |
Gauss code of -K* | O1O2O3O4O5U3O6U4U1U6U2U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 0 -2 3 1 2],[ 4 0 3 0 5 2 2],[ 0 -3 0 -1 2 0 1],[ 2 0 1 0 2 1 1],[-3 -5 -2 -2 0 -1 1],[-1 -2 0 -1 1 0 1],[-2 -2 -1 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 3 2 1 0 -2 -4],[-3 0 1 -1 -2 -2 -5],[-2 -1 0 -1 -1 -1 -2],[-1 1 1 0 0 -1 -2],[ 0 2 1 0 0 -1 -3],[ 2 2 1 1 1 0 0],[ 4 5 2 2 3 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-2,-1,0,2,4,-1,1,2,2,5,1,1,1,2,0,1,2,1,3,0] |
Phi over symmetry | [-4,-2,0,1,2,3,0,3,2,2,5,1,1,1,2,0,1,2,1,1,-1] |
Phi of -K | [-4,-2,0,1,2,3,2,1,3,4,2,1,2,3,3,1,1,1,0,1,2] |
Phi of K* | [-3,-2,-1,0,2,4,2,1,1,3,2,0,1,3,4,1,2,3,1,1,2] |
Phi of -K* | [-4,-2,0,1,2,3,0,3,2,2,5,1,1,1,2,0,1,2,1,1,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^3-t |
Normalized Jones-Krushkal polynomial | 6z^2+25z+27 |
Enhanced Jones-Krushkal polynomial | 6w^3z^2+25w^2z+27w |
Inner characteristic polynomial | t^6+57t^4+15t^2 |
Outer characteristic polynomial | t^7+91t^5+61t^3+5t |
Flat arrow polynomial | 4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K2**2 + 2*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial | -144*K1**4 + 32*K1**3*K2*K3 - 352*K1**3*K3 - 128*K1**2*K2**4 + 608*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3264*K1**2*K2**2 - 544*K1**2*K2*K4 + 5640*K1**2*K2 - 304*K1**2*K3**2 - 96*K1**2*K3*K5 - 32*K1**2*K4**2 - 5740*K1**2 + 864*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1504*K1*K2**2*K3 - 160*K1*K2**2*K5 - 640*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6672*K1*K2*K3 + 1472*K1*K3*K4 + 368*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 224*K2**4*K4 - 1360*K2**4 + 64*K2**3*K3*K5 - 32*K2**3*K6 + 160*K2**2*K3**2*K4 - 1072*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 328*K2**2*K4**2 + 2272*K2**2*K4 - 4304*K2**2 - 32*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 864*K2*K3*K5 + 224*K2*K4*K6 - 64*K3**2*K4**2 + 8*K3**2*K6 - 2480*K3**2 + 24*K3*K4*K7 - 8*K4**4 - 1088*K4**2 - 268*K5**2 - 72*K6**2 + 4502 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]] |
If K is slice | False |