Gauss code |
O1O2O3O4O5U3O6U1U6U2U5U4 |
R3 orbit |
{'O1O2O3O4O5U3O6U1U6U2U5U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U1U4U6U5O6U3 |
Gauss code of K* |
O1O2O3O4O5U1U3U6U5U4O6U2 |
Gauss code of -K* |
O1O2O3O4O5U4O6U2U1U6U3U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -1 -2 3 3 1],[ 4 0 2 0 5 4 1],[ 1 -2 0 0 3 2 0],[ 2 0 0 0 2 1 0],[-3 -5 -3 -2 0 0 0],[-3 -4 -2 -1 0 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 3 3 1 -1 -2 -4],[-3 0 0 0 -2 -1 -4],[-3 0 0 0 -3 -2 -5],[-1 0 0 0 0 0 -1],[ 1 2 3 0 0 0 -2],[ 2 1 2 0 0 0 0],[ 4 4 5 1 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-1,1,2,4,0,0,2,1,4,0,3,2,5,0,0,1,0,2,0] |
Phi over symmetry |
[-4,-2,-1,1,3,3,0,2,1,4,5,0,0,1,2,0,2,3,0,0,0] |
Phi of -K |
[-4,-2,-1,1,3,3,2,1,4,2,3,1,3,3,4,2,1,2,2,2,0] |
Phi of K* |
[-3,-3,-1,1,2,4,0,2,1,3,2,2,2,4,3,2,3,4,1,1,2] |
Phi of -K* |
[-4,-2,-1,1,3,3,0,2,1,4,5,0,0,1,2,0,2,3,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^3+t^2 |
Normalized Jones-Krushkal polynomial |
8z^2+25z+19 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+25w^2z+19w |
Inner characteristic polynomial |
t^6+64t^4+52t^2+1 |
Outer characteristic polynomial |
t^7+104t^5+181t^3+5t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1**2 - 2*K1*K3 + K2 + 2 |
2-strand cable arrow polynomial |
256*K1**2*K2**2*K4 - 2016*K1**2*K2**2 - 512*K1**2*K2*K4 + 3216*K1**2*K2 - 224*K1**2*K4**2 - 2784*K1**2 + 320*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1120*K1*K2**2*K3 - 160*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 3592*K1*K2*K3 - 32*K1*K2*K4*K5 + 920*K1*K3*K4 + 112*K1*K4*K5 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1104*K2**4 + 32*K2**3*K4*K6 - 96*K2**3*K6 + 64*K2**2*K3**2*K4 - 928*K2**2*K3**2 - 32*K2**2*K3*K7 - 272*K2**2*K4**2 + 1712*K2**2*K4 - 8*K2**2*K6**2 - 2120*K2**2 + 552*K2*K3*K5 + 144*K2*K4*K6 - 64*K3**2*K4**2 - 1096*K3**2 + 32*K3*K4*K7 - 566*K4**2 - 32*K5**2 - 16*K6**2 + 2132 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |