Gauss code |
O1O2O3O4O5U3O6U1U6U4U2U5 |
R3 orbit |
{'O1O2O3O4O5U3O6U1U6U4U2U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U4U2U6U5O6U3 |
Gauss code of K* |
O1O2O3O4O5U1U4U6U3U5O6U2 |
Gauss code of -K* |
O1O2O3O4O5U4O6U1U3U6U2U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 0 -2 1 4 1],[ 4 0 3 0 3 5 1],[ 0 -3 0 -1 1 3 0],[ 2 0 1 0 1 2 0],[-1 -3 -1 -1 0 1 0],[-4 -5 -3 -2 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 4 1 1 0 -2 -4],[-4 0 0 -1 -3 -2 -5],[-1 0 0 0 0 0 -1],[-1 1 0 0 -1 -1 -3],[ 0 3 0 1 0 -1 -3],[ 2 2 0 1 1 0 0],[ 4 5 1 3 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,-1,0,2,4,0,1,3,2,5,0,0,0,1,1,1,3,1,3,0] |
Phi over symmetry |
[-4,-2,0,1,1,4,0,3,1,3,5,1,0,1,2,0,1,3,0,0,1] |
Phi of -K |
[-4,-2,0,1,1,4,2,1,2,4,3,1,2,3,4,0,1,1,0,2,3] |
Phi of K* |
[-4,-1,-1,0,2,4,2,3,1,4,3,0,0,2,2,1,3,4,1,1,2] |
Phi of -K* |
[-4,-2,0,1,1,4,0,3,1,3,5,1,0,1,2,0,1,3,0,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
z^2+18z+33 |
Enhanced Jones-Krushkal polynomial |
w^3z^2-4w^3z+22w^2z+33w |
Inner characteristic polynomial |
t^6+61t^4+20t^2 |
Outer characteristic polynomial |
t^7+99t^5+83t^3+8t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 10*K1**2 - 4*K1*K2 - 4*K1*K3 - K1 + 5*K2 + K3 + K4 + 5 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 352*K1**4*K2 - 1552*K1**4 + 128*K1**3*K2**3*K3 - 128*K1**3*K2**2*K3 + 384*K1**3*K2*K3 - 480*K1**3*K3 - 384*K1**2*K2**4 + 1632*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 5408*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 7448*K1**2*K2 - 736*K1**2*K3**2 - 32*K1**2*K3*K5 - 64*K1**2*K4**2 - 6060*K1**2 + 1088*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 32*K1*K2**2*K5 + 96*K1*K2*K3**3 - 288*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7328*K1*K2*K3 - 32*K1*K3**2*K5 + 1576*K1*K3*K4 + 320*K1*K4*K5 + 64*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 320*K2**4*K4 - 1752*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 1152*K2**2*K3**2 - 336*K2**2*K4**2 + 1728*K2**2*K4 - 48*K2**2*K5**2 - 16*K2**2*K6**2 - 4066*K2**2 + 808*K2*K3*K5 + 296*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 48*K3**4 + 72*K3**2*K6 - 2652*K3**2 + 32*K3*K4*K7 + 8*K3*K5*K8 + 8*K4**2*K8 - 1074*K4**2 - 320*K5**2 - 142*K6**2 - 24*K7**2 - 10*K8**2 + 5130 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |