Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.235

Min(phi) over symmetries of the knot is: [-3,-2,-1,1,2,3,0,0,3,2,4,0,2,1,3,1,0,1,1,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.235']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+78t^5+52t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.235']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 64*K1**4*K2**2 + 448*K1**4*K2 - 2000*K1**4 + 160*K1**3*K2*K3 - 384*K1**3*K3 - 2112*K1**2*K2**2 - 192*K1**2*K2*K4 + 4048*K1**2*K2 - 592*K1**2*K3**2 - 32*K1**2*K3*K5 - 48*K1**2*K4**2 - 1980*K1**2 - 160*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3160*K1*K2*K3 + 776*K1*K3*K4 + 120*K1*K4*K5 + 16*K1*K5*K6 - 288*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 456*K2**2*K4 - 1820*K2**2 + 184*K2*K3*K5 + 16*K2*K4*K6 - 976*K3**2 - 328*K4**2 - 84*K5**2 - 12*K6**2 + 1990
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.235']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11258', 'vk6.11336', 'vk6.12519', 'vk6.12630', 'vk6.13893', 'vk6.13990', 'vk6.14146', 'vk6.14371', 'vk6.14964', 'vk6.15087', 'vk6.15598', 'vk6.16070', 'vk6.17416', 'vk6.22593', 'vk6.22624', 'vk6.23924', 'vk6.24065', 'vk6.24157', 'vk6.26143', 'vk6.26560', 'vk6.30932', 'vk6.31055', 'vk6.33704', 'vk6.33781', 'vk6.34579', 'vk6.36220', 'vk6.37664', 'vk6.37713', 'vk6.42269', 'vk6.44796', 'vk6.52008', 'vk6.52102', 'vk6.54103', 'vk6.54408', 'vk6.54581', 'vk6.56496', 'vk6.56667', 'vk6.59051', 'vk6.60066', 'vk6.64559']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U3O6U2U6U5U1U4
R3 orbit {'O1O2O3O4O5U3O6U2U6U5U1U4', 'O1O2O3O4U2O5U1U5U6U3O6U4'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U2U5U1U6U4O6U3
Gauss code of K* O1O2O3O4O5U4U1U6U5U3O6U2
Gauss code of -K* O1O2O3O4O5U4O6U3U1U6U5U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -3 -2 3 2 1],[ 1 0 -2 -1 3 2 1],[ 3 2 0 0 4 3 1],[ 2 1 0 0 2 1 0],[-3 -3 -4 -2 0 0 0],[-2 -2 -3 -1 0 0 0],[-1 -1 -1 0 0 0 0]]
Primitive based matrix [[ 0 3 2 1 -1 -2 -3],[-3 0 0 0 -3 -2 -4],[-2 0 0 0 -2 -1 -3],[-1 0 0 0 -1 0 -1],[ 1 3 2 1 0 -1 -2],[ 2 2 1 0 1 0 0],[ 3 4 3 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,1,2,3,0,0,3,2,4,0,2,1,3,1,0,1,1,2,0]
Phi over symmetry [-3,-2,-1,1,2,3,0,0,3,2,4,0,2,1,3,1,0,1,1,2,0]
Phi of -K [-3,-2,-1,1,2,3,1,0,3,2,2,0,3,3,3,1,1,1,1,2,1]
Phi of K* [-3,-2,-1,1,2,3,1,2,1,3,2,1,1,3,2,1,3,3,0,0,1]
Phi of -K* [-3,-2,-1,1,2,3,0,2,1,3,4,1,0,1,2,1,2,3,0,0,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial z^2+14z+25
Enhanced Jones-Krushkal polynomial w^3z^2+14w^2z+25w
Inner characteristic polynomial t^6+50t^4+20t^2+1
Outer characteristic polynomial t^7+78t^5+52t^3+4t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -64*K1**6 - 64*K1**4*K2**2 + 448*K1**4*K2 - 2000*K1**4 + 160*K1**3*K2*K3 - 384*K1**3*K3 - 2112*K1**2*K2**2 - 192*K1**2*K2*K4 + 4048*K1**2*K2 - 592*K1**2*K3**2 - 32*K1**2*K3*K5 - 48*K1**2*K4**2 - 1980*K1**2 - 160*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3160*K1*K2*K3 + 776*K1*K3*K4 + 120*K1*K4*K5 + 16*K1*K5*K6 - 288*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 456*K2**2*K4 - 1820*K2**2 + 184*K2*K3*K5 + 16*K2*K4*K6 - 976*K3**2 - 328*K4**2 - 84*K5**2 - 12*K6**2 + 1990
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice False
Contact