| Gauss code |
O1O2O3O4O5U3O6U4U5U6U1U2 |
| R3 orbit |
{'O1O2O3O4O5U3O6U4U5U6U1U2'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4O5U4U5U6U1U2O6U3 |
| Gauss code of K* |
O1O2O3O4O5U4U5U6U1U2O6U3 |
| Gauss code of -K* |
Same |
| Diagrammatic symmetry type |
- |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -1 1 -2 -1 1 2],[ 1 0 1 -2 -1 1 2],[-1 -1 0 -2 -1 1 2],[ 2 2 2 0 1 2 2],[ 1 1 1 -1 0 1 2],[-1 -1 -1 -2 -1 0 1],[-2 -2 -2 -2 -2 -1 0]] |
| Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -2 -2 -2 -2],[-1 1 0 -1 -1 -1 -2],[-1 2 1 0 -1 -1 -2],[ 1 2 1 1 0 1 -1],[ 1 2 1 1 -1 0 -2],[ 2 2 2 2 1 2 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,-1,1,1,2,1,2,2,2,2,1,1,1,2,1,1,2,-1,1,2] |
| Phi over symmetry |
[-2,-1,-1,1,1,2,-1,0,1,1,2,1,1,1,1,1,1,1,-1,-1,0] |
| Phi of -K |
[-2,-1,-1,1,1,2,-1,0,1,1,2,1,1,1,1,1,1,1,-1,-1,0] |
| Phi of K* |
[-2,-1,-1,1,1,2,-1,0,1,1,2,1,1,1,1,1,1,1,-1,-1,0] |
| Phi of -K* |
[-2,-1,-1,1,1,2,1,2,2,2,2,1,1,1,2,1,1,2,-1,1,2] |
| Symmetry type of based matrix |
- |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
| Enhanced Jones-Krushkal polynomial |
7w^3z^2+24w^2z+21w |
| Inner characteristic polynomial |
t^6+36t^4+20t^2+1 |
| Outer characteristic polynomial |
t^7+48t^5+62t^3+5t |
| Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3 |
| 2-strand cable arrow polynomial |
-1024*K1**4*K2**2 + 1856*K1**4*K2 - 1920*K1**4 + 704*K1**3*K2*K3 - 384*K1**3*K3 - 1152*K1**2*K2**4 + 3136*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7328*K1**2*K2**2 - 448*K1**2*K2*K4 + 4880*K1**2*K2 - 1296*K1**2 + 1408*K1*K2**3*K3 - 1792*K1*K2**2*K3 - 128*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4208*K1*K2*K3 + 144*K1*K3*K4 - 192*K2**6 + 192*K2**4*K4 - 2160*K2**4 - 480*K2**2*K3**2 - 48*K2**2*K4**2 + 1488*K2**2*K4 - 512*K2**2 + 96*K2*K3*K5 - 544*K3**2 - 148*K4**2 + 1378 |
| Genus of based matrix |
0 |
| Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}]] |
| If K is slice |
True |