Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,-1,1,3,2,3,1,2,1,2,0,1,1,1,1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.237'] |
Arrow polynomial of the knot is: 8*K1**3 - 6*K1**2 - 6*K1*K2 - 3*K1 + 3*K2 + K3 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.237', '6.602', '6.956', '6.986', '6.992', '6.1052', '6.1059'] |
Outer characteristic polynomial of the knot is: t^7+61t^5+34t^3+3t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.237'] |
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 160*K1**4*K2 - 464*K1**4 + 96*K1**3*K2*K3 + 512*K1**2*K2**3 - 2416*K1**2*K2**2 - 224*K1**2*K2*K4 + 3240*K1**2*K2 - 80*K1**2*K3**2 - 2472*K1**2 + 256*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 2704*K1*K2*K3 + 408*K1*K3*K4 + 56*K1*K4*K5 + 32*K1*K5*K6 - 64*K2**6 + 96*K2**4*K4 - 888*K2**4 - 304*K2**2*K3**2 - 200*K2**2*K4**2 + 1248*K2**2*K4 - 1834*K2**2 + 136*K2*K3*K5 + 80*K2*K4*K6 - 828*K3**2 - 458*K4**2 - 76*K5**2 - 30*K6**2 + 2048 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.237'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10131', 'vk6.10182', 'vk6.10325', 'vk6.10418', 'vk6.17675', 'vk6.17722', 'vk6.24238', 'vk6.24283', 'vk6.24814', 'vk6.25271', 'vk6.29910', 'vk6.29947', 'vk6.30010', 'vk6.30069', 'vk6.30962', 'vk6.31087', 'vk6.32140', 'vk6.32259', 'vk6.36603', 'vk6.36996', 'vk6.43607', 'vk6.43712', 'vk6.51687', 'vk6.51716', 'vk6.52040', 'vk6.52126', 'vk6.55709', 'vk6.55767', 'vk6.60279', 'vk6.60338', 'vk6.60659', 'vk6.61004', 'vk6.63328', 'vk6.63341', 'vk6.63370', 'vk6.63391', 'vk6.65453', 'vk6.65794', 'vk6.68551', 'vk6.68582'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U3O6U5U1U6U4U2 |
R3 orbit | {'O1O2O3O4O5U3O6U5U1U6U4U2', 'O1O2O3O4O5U3U4O6U1U5U6U2'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3O4O5U4U2U6U5U1O6U3 |
Gauss code of K* | O1O2O3O4O5U2U5U6U4U1O6U3 |
Gauss code of -K* | O1O2O3O4O5U3O6U5U2U6U1U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 1 -2 2 0 2],[ 3 0 3 -1 3 1 2],[-1 -3 0 -2 1 0 1],[ 2 1 2 0 2 1 1],[-2 -3 -1 -2 0 -1 1],[ 0 -1 0 -1 1 0 1],[-2 -2 -1 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 2 2 1 0 -2 -3],[-2 0 1 -1 -1 -2 -3],[-2 -1 0 -1 -1 -1 -2],[-1 1 1 0 0 -2 -3],[ 0 1 1 0 0 -1 -1],[ 2 2 1 2 1 0 1],[ 3 3 2 3 1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,0,2,3,-1,1,1,2,3,1,1,1,2,0,2,3,1,1,-1] |
Phi over symmetry | [-3,-2,0,1,2,2,-1,1,3,2,3,1,2,1,2,0,1,1,1,1,-1] |
Phi of -K | [-3,-2,0,1,2,2,2,2,1,2,3,1,1,2,3,1,1,1,0,0,-1] |
Phi of K* | [-2,-2,-1,0,2,3,-1,0,1,3,3,0,1,2,2,1,1,1,1,2,2] |
Phi of -K* | [-3,-2,0,1,2,2,-1,1,3,2,3,1,2,1,2,0,1,1,1,1,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-t^2-t |
Normalized Jones-Krushkal polynomial | 3z^2+16z+21 |
Enhanced Jones-Krushkal polynomial | 3w^3z^2+16w^2z+21w |
Inner characteristic polynomial | t^6+39t^4+17t^2 |
Outer characteristic polynomial | t^7+61t^5+34t^3+3t |
Flat arrow polynomial | 8*K1**3 - 6*K1**2 - 6*K1*K2 - 3*K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial | -64*K1**4*K2**2 + 160*K1**4*K2 - 464*K1**4 + 96*K1**3*K2*K3 + 512*K1**2*K2**3 - 2416*K1**2*K2**2 - 224*K1**2*K2*K4 + 3240*K1**2*K2 - 80*K1**2*K3**2 - 2472*K1**2 + 256*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 2704*K1*K2*K3 + 408*K1*K3*K4 + 56*K1*K4*K5 + 32*K1*K5*K6 - 64*K2**6 + 96*K2**4*K4 - 888*K2**4 - 304*K2**2*K3**2 - 200*K2**2*K4**2 + 1248*K2**2*K4 - 1834*K2**2 + 136*K2*K3*K5 + 80*K2*K4*K6 - 828*K3**2 - 458*K4**2 - 76*K5**2 - 30*K6**2 + 2048 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {4}, {1, 3}, {2}]] |
If K is slice | False |