Gauss code |
O1O2O3O4O5U3O6U5U6U2U1U4 |
R3 orbit |
{'O1O2O3O4O5U3O6U5U6U2U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U5U4U6U1O6U3 |
Gauss code of K* |
O1O2O3O4O5U4U3U6U5U1O6U2 |
Gauss code of -K* |
O1O2O3O4O5U4O6U5U1U6U3U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 -2 3 0 1],[ 1 0 0 -1 3 0 1],[ 1 0 0 -1 2 0 1],[ 2 1 1 0 2 1 1],[-3 -3 -2 -2 0 -1 1],[ 0 0 0 -1 1 0 1],[-1 -1 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 1 -1 -2 -3 -2],[-1 -1 0 -1 -1 -1 -1],[ 0 1 1 0 0 0 -1],[ 1 2 1 0 0 0 -1],[ 1 3 1 0 0 0 -1],[ 2 2 1 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,1,1,2,-1,1,2,3,2,1,1,1,1,0,0,1,0,1,1] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,1,2,3,2,1,1,1,1,0,0,1,0,1,1] |
Phi of -K |
[-2,-1,-1,0,1,3,0,0,1,2,3,0,1,1,1,1,1,2,0,2,3] |
Phi of K* |
[-3,-1,0,1,1,2,3,2,1,2,3,0,1,1,2,1,1,1,0,0,0] |
Phi of -K* |
[-2,-1,-1,0,1,3,1,1,1,1,2,0,0,1,2,0,1,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
2z^2+15z+23 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2-8w^3z+23w^2z+23w |
Inner characteristic polynomial |
t^6+26t^4+17t^2 |
Outer characteristic polynomial |
t^7+42t^5+46t^3+7t |
Flat arrow polynomial |
-2*K1**2 - 6*K1*K2 + 3*K1 + K2 + 3*K3 + 2 |
2-strand cable arrow polynomial |
96*K1**4*K2 - 848*K1**4 + 128*K1**3*K3*K4 - 64*K1**3*K3 - 944*K1**2*K2**2 - 992*K1**2*K2*K4 + 3208*K1**2*K2 - 384*K1**2*K3**2 - 96*K1**2*K3*K5 - 304*K1**2*K4**2 - 3868*K1**2 - 192*K1*K2**2*K3 + 32*K1*K2*K3**3 - 224*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 3696*K1*K2*K3 + 2376*K1*K3*K4 + 464*K1*K4*K5 + 8*K1*K5*K6 - 8*K2**4 - 64*K2**2*K3**2 - 56*K2**2*K4**2 + 928*K2**2*K4 - 2982*K2**2 + 272*K2*K3*K5 + 40*K2*K4*K6 - 16*K3**4 + 16*K3**2*K6 - 2056*K3**2 - 1270*K4**2 - 212*K5**2 - 10*K6**2 + 3356 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}]] |
If K is slice |
False |