Min(phi) over symmetries of the knot is: [-3,-1,2,2,0,3,3,1,1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.248'] |
Arrow polynomial of the knot is: -8*K1**2 - 6*K1*K2 + 3*K1 + 4*K2 + 3*K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.248', '6.533', '6.1091'] |
Outer characteristic polynomial of the knot is: t^5+39t^3+10t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.248'] |
2-strand cable arrow polynomial of the knot is: -768*K1**6 - 448*K1**4*K2**2 + 2016*K1**4*K2 - 5120*K1**4 + 320*K1**3*K2*K3 - 160*K1**3*K3 - 4288*K1**2*K2**2 - 128*K1**2*K2*K4 + 8040*K1**2*K2 - 1760*K1**2*K3**2 - 128*K1**2*K3*K5 - 512*K1**2*K4**2 - 32*K1**2*K4*K6 - 3592*K1**2 - 640*K1*K2**2*K3 - 384*K1*K2*K3*K4 + 6416*K1*K2*K3 + 3120*K1*K3*K4 + 800*K1*K4*K5 + 40*K1*K5*K6 - 448*K2**4 - 544*K2**2*K3**2 - 216*K2**2*K4**2 + 1384*K2**2*K4 - 4274*K2**2 + 808*K2*K3*K5 + 168*K2*K4*K6 + 8*K3**2*K6 - 2648*K3**2 - 1472*K4**2 - 416*K5**2 - 46*K6**2 + 4902 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.248'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4454', 'vk6.4549', 'vk6.5836', 'vk6.5963', 'vk6.7890', 'vk6.8004', 'vk6.9315', 'vk6.9434', 'vk6.13405', 'vk6.13500', 'vk6.13689', 'vk6.14060', 'vk6.15033', 'vk6.15153', 'vk6.17802', 'vk6.17835', 'vk6.18850', 'vk6.19443', 'vk6.19736', 'vk6.24345', 'vk6.25443', 'vk6.25476', 'vk6.26615', 'vk6.33247', 'vk6.33306', 'vk6.37569', 'vk6.44892', 'vk6.48641', 'vk6.50537', 'vk6.53655', 'vk6.55819', 'vk6.65483'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U4O6U2U6U5U1U3 |
R3 orbit | {'O1O2O3O4O5U4O6U2U6U5U1U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U3U5U1U6U4O6U2 |
Gauss code of K* | O1O2O3O4O5U4U1U5U6U3O6U2 |
Gauss code of -K* | O1O2O3O4O5U4O6U3U6U1U5U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -3 2 -1 2 1],[ 1 0 -2 2 -1 2 1],[ 3 2 0 3 0 3 1],[-2 -2 -3 0 -1 1 0],[ 1 1 0 1 0 1 0],[-2 -2 -3 -1 -1 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix | [[ 0 2 2 -1 -3],[-2 0 1 -1 -3],[-2 -1 0 -1 -3],[ 1 1 1 0 0],[ 3 3 3 0 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-2,-2,1,3,-1,1,3,1,3,0] |
Phi over symmetry | [-3,-1,2,2,0,3,3,1,1,-1] |
Phi of -K | [-3,-1,2,2,2,2,2,2,2,-1] |
Phi of K* | [-2,-2,1,3,-1,2,2,2,2,2] |
Phi of -K* | [-3,-1,2,2,0,3,3,1,1,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-2t^2+t |
Normalized Jones-Krushkal polynomial | 2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial | 2w^3z^2+23w^2z+39w |
Inner characteristic polynomial | t^4+21t^2 |
Outer characteristic polynomial | t^5+39t^3+10t |
Flat arrow polynomial | -8*K1**2 - 6*K1*K2 + 3*K1 + 4*K2 + 3*K3 + 5 |
2-strand cable arrow polynomial | -768*K1**6 - 448*K1**4*K2**2 + 2016*K1**4*K2 - 5120*K1**4 + 320*K1**3*K2*K3 - 160*K1**3*K3 - 4288*K1**2*K2**2 - 128*K1**2*K2*K4 + 8040*K1**2*K2 - 1760*K1**2*K3**2 - 128*K1**2*K3*K5 - 512*K1**2*K4**2 - 32*K1**2*K4*K6 - 3592*K1**2 - 640*K1*K2**2*K3 - 384*K1*K2*K3*K4 + 6416*K1*K2*K3 + 3120*K1*K3*K4 + 800*K1*K4*K5 + 40*K1*K5*K6 - 448*K2**4 - 544*K2**2*K3**2 - 216*K2**2*K4**2 + 1384*K2**2*K4 - 4274*K2**2 + 808*K2*K3*K5 + 168*K2*K4*K6 + 8*K3**2*K6 - 2648*K3**2 - 1472*K4**2 - 416*K5**2 - 46*K6**2 + 4902 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {2, 5}, {3, 4}, {1}]] |
If K is slice | False |