| Gauss code |
O1O2O3O4O5U4O6U2U6U5U1U3 |
| R3 orbit |
{'O1O2O3O4O5U4O6U2U6U5U1U3'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4O5U3U5U1U6U4O6U2 |
| Gauss code of K* |
O1O2O3O4O5U4U1U5U6U3O6U2 |
| Gauss code of -K* |
O1O2O3O4O5U4O6U3U6U1U5U2 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -1 -3 2 -1 2 1],[ 1 0 -2 2 -1 2 1],[ 3 2 0 3 0 3 1],[-2 -2 -3 0 -1 1 0],[ 1 1 0 1 0 1 0],[-2 -2 -3 -1 -1 0 0],[-1 -1 -1 0 0 0 0]] |
| Primitive based matrix |
[[ 0 2 2 -1 -3],[-2 0 1 -1 -3],[-2 -1 0 -1 -3],[ 1 1 1 0 0],[ 3 3 3 0 0]] |
| If based matrix primitive |
False |
| Phi of primitive based matrix |
[-2,-2,1,3,-1,1,3,1,3,0] |
| Phi over symmetry |
[-3,-1,2,2,0,3,3,1,1,-1] |
| Phi of -K |
[-3,-1,2,2,2,2,2,2,2,-1] |
| Phi of K* |
[-2,-2,1,3,-1,2,2,2,2,2] |
| Phi of -K* |
[-3,-1,2,2,0,3,3,1,1,-1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^3-2t^2+t |
| Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
| Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
| Inner characteristic polynomial |
t^4+21t^2 |
| Outer characteristic polynomial |
t^5+39t^3+10t |
| Flat arrow polynomial |
-8*K1**2 - 6*K1*K2 + 3*K1 + 4*K2 + 3*K3 + 5 |
| 2-strand cable arrow polynomial |
-768*K1**6 - 448*K1**4*K2**2 + 2016*K1**4*K2 - 5120*K1**4 + 320*K1**3*K2*K3 - 160*K1**3*K3 - 4288*K1**2*K2**2 - 128*K1**2*K2*K4 + 8040*K1**2*K2 - 1760*K1**2*K3**2 - 128*K1**2*K3*K5 - 512*K1**2*K4**2 - 32*K1**2*K4*K6 - 3592*K1**2 - 640*K1*K2**2*K3 - 384*K1*K2*K3*K4 + 6416*K1*K2*K3 + 3120*K1*K3*K4 + 800*K1*K4*K5 + 40*K1*K5*K6 - 448*K2**4 - 544*K2**2*K3**2 - 216*K2**2*K4**2 + 1384*K2**2*K4 - 4274*K2**2 + 808*K2*K3*K5 + 168*K2*K4*K6 + 8*K3**2*K6 - 2648*K3**2 - 1472*K4**2 - 416*K5**2 - 46*K6**2 + 4902 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {2, 5}, {3, 4}, {1}]] |
| If K is slice |
False |