Gauss code |
O1O2O3O4O5U4O6U3U6U5U1U2 |
R3 orbit |
{'O1O2O3O4O5U4O6U3U6U5U1U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U5U1U6U3O6U2 |
Gauss code of K* |
O1O2O3O4O5U4U5U1U6U3O6U2 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -2 -1 2 1],[ 1 0 1 -2 -1 2 1],[-1 -1 0 -2 -1 2 1],[ 2 2 2 0 0 3 1],[ 1 1 1 0 0 1 0],[-2 -2 -2 -3 -1 0 0],[-1 -1 -1 -1 0 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 -2 -1 -2 -3],[-1 0 0 -1 0 -1 -1],[-1 2 1 0 -1 -1 -2],[ 1 1 0 1 0 1 0],[ 1 2 1 1 -1 0 -2],[ 2 3 1 2 0 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,2,1,2,3,1,0,1,1,1,1,2,-1,0,2] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,1,1,1,2,2,-1,-1,1] |
Phi of -K |
[-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,1,1,1,2,2,-1,-1,1] |
Phi of K* |
[-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,1,1,1,2,2,-1,-1,1] |
Phi of -K* |
[-2,-1,-1,1,1,2,0,2,1,2,3,1,0,1,1,1,1,2,-1,0,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+24z+33 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+24w^2z+33w |
Inner characteristic polynomial |
t^6+32t^4+20t^2+1 |
Outer characteristic polynomial |
t^7+44t^5+56t^3+7t |
Flat arrow polynomial |
8*K1**3 - 16*K1**2 - 8*K1*K2 - 2*K1 + 8*K2 + 2*K3 + 9 |
2-strand cable arrow polynomial |
-1024*K1**6 - 2048*K1**4*K2**2 + 4096*K1**4*K2 - 5504*K1**4 + 1664*K1**3*K2*K3 - 704*K1**3*K3 - 1152*K1**2*K2**4 + 3840*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 12480*K1**2*K2**2 - 896*K1**2*K2*K4 + 11312*K1**2*K2 - 768*K1**2*K3**2 - 128*K1**2*K4**2 - 2664*K1**2 + 1536*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 2816*K1*K2**2*K3 - 256*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 8816*K1*K2*K3 + 1200*K1*K3*K4 + 192*K1*K4*K5 - 64*K2**6 + 128*K2**4*K4 - 3360*K2**4 - 1248*K2**2*K3**2 - 224*K2**2*K4**2 + 2736*K2**2*K4 - 2348*K2**2 - 64*K2*K3**2*K4 + 688*K2*K3*K5 + 128*K2*K4*K6 - 1480*K3**2 - 560*K4**2 - 112*K5**2 - 12*K6**2 + 3574 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
True |