Gauss code |
O1O2O3O4O5U1U2O6U5U3U4U6 |
R3 orbit |
{'O1O2O3O4O5U1U2O6U5U3U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U2U3U1O6U4U5 |
Gauss code of K* |
O1O2O3O4U5U6U2U3U1O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U4U2U3U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 0 2 1 3],[ 4 0 1 3 4 2 3],[ 2 -1 0 2 3 1 3],[ 0 -3 -2 0 1 0 3],[-2 -4 -3 -1 0 0 2],[-1 -2 -1 0 0 0 1],[-3 -3 -3 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 2 1 0 -2 -4],[-3 0 -2 -1 -3 -3 -3],[-2 2 0 0 -1 -3 -4],[-1 1 0 0 0 -1 -2],[ 0 3 1 0 0 -2 -3],[ 2 3 3 1 2 0 -1],[ 4 3 4 2 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,0,2,4,2,1,3,3,3,0,1,3,4,0,1,2,2,3,1] |
Phi over symmetry |
[-4,-2,0,1,2,3,1,1,3,2,4,0,2,1,2,1,1,0,1,1,-1] |
Phi of -K |
[-4,-2,0,1,2,3,1,1,3,2,4,0,2,1,2,1,1,0,1,1,-1] |
Phi of K* |
[-3,-2,-1,0,2,4,-1,1,0,2,4,1,1,1,2,1,2,3,0,1,1] |
Phi of -K* |
[-4,-2,0,1,2,3,1,3,2,4,3,2,1,3,3,0,1,3,0,1,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t |
Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+10w^3z^2+23w^2z+23w |
Inner characteristic polynomial |
t^6+77t^4+40t^2+1 |
Outer characteristic polynomial |
t^7+111t^5+118t^3+13t |
Flat arrow polynomial |
-8*K1**4 + 4*K1**3 + 4*K1**2*K2 - 2*K1*K2 - 2*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial |
256*K1**4*K2 - 2016*K1**4 + 256*K1**3*K2*K3 - 416*K1**3*K3 + 128*K1**2*K2**5 - 1152*K1**2*K2**4 + 2208*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 8784*K1**2*K2**2 - 672*K1**2*K2*K4 + 8704*K1**2*K2 - 224*K1**2*K3**2 - 4096*K1**2 + 128*K1*K2**5*K3 + 1984*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 1312*K1*K2**2*K3 - 416*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 6880*K1*K2*K3 + 376*K1*K3*K4 + 24*K1*K4*K5 - 128*K2**8 + 128*K2**6*K4 - 1568*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 1536*K2**4*K4 - 3904*K2**4 + 32*K2**3*K3*K5 - 192*K2**3*K6 - 848*K2**2*K3**2 - 296*K2**2*K4**2 + 2800*K2**2*K4 - 1304*K2**2 + 336*K2*K3*K5 + 32*K2*K4*K6 - 1236*K3**2 - 312*K4**2 - 12*K5**2 + 3238 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |