Gauss code |
O1O2O3O4O5U1U2O6U5U4U6U3 |
R3 orbit |
{'O1O2O3O4O5U1U2O6U5U4U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U6U2U1O6U4U5 |
Gauss code of K* |
O1O2O3O4U5U6U4U2U1O5O6U3 |
Gauss code of -K* |
O1O2O3O4U2O5O6U4U3U1U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 2 1 1 2],[ 4 0 1 4 3 2 2],[ 2 -1 0 3 2 1 2],[-2 -4 -3 0 -1 -1 2],[-1 -3 -2 1 0 0 2],[-1 -2 -1 1 0 0 1],[-2 -2 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 2 1 1 -2 -4],[-2 0 2 -1 -1 -3 -4],[-2 -2 0 -1 -2 -2 -2],[-1 1 1 0 0 -1 -2],[-1 1 2 0 0 -2 -3],[ 2 3 2 1 2 0 -1],[ 4 4 2 2 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,-1,2,4,-2,1,1,3,4,1,2,2,2,0,1,2,2,3,1] |
Phi over symmetry |
[-4,-2,1,1,2,2,1,2,3,2,4,1,2,1,2,0,0,-1,0,0,-2] |
Phi of -K |
[-4,-2,1,1,2,2,1,2,3,2,4,1,2,1,2,0,0,-1,0,0,-2] |
Phi of K* |
[-2,-2,-1,-1,2,4,-2,-1,0,2,4,0,0,1,2,0,1,2,2,3,1] |
Phi of -K* |
[-4,-2,1,1,2,2,1,2,3,2,4,1,2,2,3,0,1,1,2,1,-2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
6z^2+19z+15 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+10w^3z^2-4w^3z+23w^2z+15w |
Inner characteristic polynomial |
t^6+63t^4+12t^2 |
Outer characteristic polynomial |
t^7+93t^5+107t^3+7t |
Flat arrow polynomial |
-8*K1**4 + 4*K1**2*K2 + 6*K1**2 - K2 |
2-strand cable arrow polynomial |
-64*K1**4 - 1408*K1**2*K2**4 + 2912*K1**2*K2**3 - 4672*K1**2*K2**2 - 352*K1**2*K2*K4 + 3392*K1**2*K2 - 192*K1**2*K3**2 - 2320*K1**2 + 1440*K1*K2**3*K3 - 1440*K1*K2**2*K3 - 224*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 3360*K1*K2*K3 + 600*K1*K3*K4 + 56*K1*K4*K5 - 128*K2**8 + 128*K2**6*K4 - 1088*K2**6 - 32*K2**4*K4**2 + 1120*K2**4*K4 - 2504*K2**4 - 128*K2**3*K6 - 384*K2**2*K3**2 - 304*K2**2*K4**2 + 2032*K2**2*K4 - 480*K2**2 + 192*K2*K3*K5 + 72*K2*K4*K6 - 784*K3**2 - 450*K4**2 - 48*K5**2 + 1760 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |