Gauss code |
O1O2O3O4O5U1U3O6U2U4U5U6 |
R3 orbit |
{'O1O2O3O4O5U1U3O6U2U4U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U1U2U4O6U3U5 |
Gauss code of K* |
O1O2O3O4U5U1U6U2U3O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U2U3U5U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 -1 1 3 3],[ 4 0 2 1 3 4 3],[ 2 -2 0 0 2 3 3],[ 1 -1 0 0 1 2 2],[-1 -3 -2 -1 0 1 2],[-3 -4 -3 -2 -1 0 1],[-3 -3 -3 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 3 1 -1 -2 -4],[-3 0 1 -1 -2 -3 -4],[-3 -1 0 -2 -2 -3 -3],[-1 1 2 0 -1 -2 -3],[ 1 2 2 1 0 0 -1],[ 2 3 3 2 0 0 -2],[ 4 4 3 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-1,1,2,4,-1,1,2,3,4,2,2,3,3,1,2,3,0,1,2] |
Phi over symmetry |
[-4,-2,-1,1,3,3,0,2,2,3,4,1,1,2,2,1,2,2,1,0,-1] |
Phi of -K |
[-4,-2,-1,1,3,3,0,2,2,3,4,1,1,2,2,1,2,2,1,0,-1] |
Phi of K* |
[-3,-3,-1,1,2,4,-1,0,2,2,4,1,2,2,3,1,1,2,1,2,0] |
Phi of -K* |
[-4,-2,-1,1,3,3,2,1,3,3,4,0,2,3,3,1,2,2,2,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^3+t^2 |
Normalized Jones-Krushkal polynomial |
3z^2+20z+29 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+20w^2z+29w |
Inner characteristic polynomial |
t^6+76t^4+16t^2 |
Outer characteristic polynomial |
t^7+116t^5+45t^3+4t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 12*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-1648*K1**4 + 448*K1**3*K2*K3 + 32*K1**3*K3*K4 - 704*K1**3*K3 - 128*K1**2*K2**4 + 704*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 5472*K1**2*K2**2 + 224*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 640*K1**2*K2*K4 + 7664*K1**2*K2 - 816*K1**2*K3**2 - 64*K1**2*K3*K5 - 144*K1**2*K4**2 - 32*K1**2*K4*K6 - 5060*K1**2 + 1568*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 224*K1*K2**2*K5 + 64*K1*K2*K3**3 - 352*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 6880*K1*K2*K3 - 96*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1264*K1*K3*K4 + 272*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 128*K2**4*K4 - 1616*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 1200*K2**2*K3**2 - 240*K2**2*K4**2 + 1408*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 3050*K2**2 + 584*K2*K3*K5 + 136*K2*K4*K6 + 16*K2*K5*K7 + 8*K3**2*K6 - 1908*K3**2 - 566*K4**2 - 120*K5**2 - 22*K6**2 + 3860 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |