Gauss code |
O1O2O3O4O5U1U3O6U2U6U5U4 |
R3 orbit |
{'O1O2O3O4O5U1U3O6U2U6U5U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U1U6U4O6U3U5 |
Gauss code of K* |
O1O2O3O4U5U1U6U4U3O5O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5O6U2U1U5U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 -1 3 3 1],[ 4 0 2 1 4 3 1],[ 2 -2 0 0 4 3 1],[ 1 -1 0 0 2 1 0],[-3 -4 -4 -2 0 0 0],[-3 -3 -3 -1 0 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 3 3 1 -1 -2 -4],[-3 0 0 0 -1 -3 -3],[-3 0 0 0 -2 -4 -4],[-1 0 0 0 0 -1 -1],[ 1 1 2 0 0 0 -1],[ 2 3 4 1 0 0 -2],[ 4 3 4 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-1,1,2,4,0,0,1,3,3,0,2,4,4,0,1,1,0,1,2] |
Phi over symmetry |
[-4,-2,-1,1,3,3,0,2,4,3,4,1,2,1,2,2,2,3,2,2,0] |
Phi of -K |
[-4,-2,-1,1,3,3,0,2,4,3,4,1,2,1,2,2,2,3,2,2,0] |
Phi of K* |
[-3,-3,-1,1,2,4,0,2,2,1,3,2,3,2,4,2,2,4,1,2,0] |
Phi of -K* |
[-4,-2,-1,1,3,3,2,1,1,3,4,0,1,3,4,0,1,2,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^3+t^2 |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+22w^2z+25w |
Inner characteristic polynomial |
t^6+62t^4+20t^2 |
Outer characteristic polynomial |
t^7+102t^5+69t^3+4t |
Flat arrow polynomial |
-2*K1**2 - 4*K1*K2 + 2*K1 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
2-strand cable arrow polynomial |
256*K1**4*K2 - 1424*K1**4 + 640*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1248*K1**3*K3 - 1360*K1**2*K2**2 - 704*K1**2*K2*K4 + 4288*K1**2*K2 - 1104*K1**2*K3**2 - 160*K1**2*K4**2 - 3296*K1**2 + 64*K1*K2**3*K3 - 192*K1*K2**2*K3 + 128*K1*K2*K3**3 + 64*K1*K2*K3*K4**2 - 384*K1*K2*K3*K4 + 3984*K1*K2*K3 - 64*K1*K3**2*K5 + 1648*K1*K3*K4 + 416*K1*K4*K5 + 16*K1*K5*K6 - 40*K2**4 - 128*K2**2*K3**2 - 48*K2**2*K4**2 + 592*K2**2*K4 - 2412*K2**2 + 320*K2*K3*K5 + 40*K2*K4*K6 + 8*K2*K5*K7 - 128*K3**4 - 80*K3**2*K4**2 + 104*K3**2*K6 - 1492*K3**2 + 40*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 750*K4**2 - 232*K5**2 - 44*K6**2 - 12*K7**2 - 2*K8**2 + 2662 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |