Gauss code |
O1O2O3O4O5U1U3O6U4U5U6U2 |
R3 orbit |
{'O1O2O3O4O5U1U3O6U4U5U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U6U1U2O6U3U5 |
Gauss code of K* |
O1O2O3O4U5U4U6U1U2O5O6U3 |
Gauss code of -K* |
O1O2O3O4U2O5O6U3U4U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 1 -1 0 2 2],[ 4 0 4 1 2 3 2],[-1 -4 0 -2 -1 1 2],[ 1 -1 2 0 1 2 2],[ 0 -2 1 -1 0 1 2],[-2 -3 -1 -2 -1 0 1],[-2 -2 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 2 1 0 -1 -4],[-2 0 1 -1 -1 -2 -3],[-2 -1 0 -2 -2 -2 -2],[-1 1 2 0 -1 -2 -4],[ 0 1 2 1 0 -1 -2],[ 1 2 2 2 1 0 -1],[ 4 3 2 4 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,0,1,4,-1,1,1,2,3,2,2,2,2,1,2,4,1,2,1] |
Phi over symmetry |
[-4,-1,0,1,2,2,1,2,4,2,3,1,2,2,2,1,2,1,2,1,-1] |
Phi of -K |
[-4,-1,0,1,2,2,2,2,1,3,4,0,0,1,1,0,1,0,0,-1,-1] |
Phi of K* |
[-2,-2,-1,0,1,4,-1,-1,0,1,4,0,1,1,3,0,0,1,0,2,2] |
Phi of -K* |
[-4,-1,0,1,2,2,1,2,4,2,3,1,2,2,2,1,2,1,2,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^2 |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+59t^4+19t^2+1 |
Outer characteristic polynomial |
t^7+85t^5+95t^3+7t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 6*K1**2 - 8*K1*K2 - 2*K1*K3 - 2*K1 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial |
-384*K1**4*K2**2 + 896*K1**4*K2 - 1440*K1**4 + 608*K1**3*K2*K3 - 288*K1**3*K3 - 640*K1**2*K2**4 + 2016*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 + 192*K1**2*K2**2*K4 - 8624*K1**2*K2**2 + 192*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 800*K1**2*K2*K4 + 7592*K1**2*K2 - 480*K1**2*K3**2 - 64*K1**2*K3*K5 - 4404*K1**2 + 3392*K1*K2**3*K3 + 416*K1*K2**2*K3*K4 - 2976*K1*K2**2*K3 - 736*K1*K2**2*K5 + 64*K1*K2*K3**3 - 544*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8912*K1*K2*K3 - 64*K1*K2*K4*K5 + 1176*K1*K3*K4 + 104*K1*K4*K5 + 8*K1*K5*K6 - 192*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 448*K2**4*K4 - 3512*K2**4 + 224*K2**3*K3*K5 + 32*K2**3*K4*K6 - 96*K2**3*K6 - 2784*K2**2*K3**2 - 336*K2**2*K4**2 + 2984*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 2532*K2**2 - 64*K2*K3**2*K4 + 1352*K2*K3*K5 + 128*K2*K4*K6 + 8*K2*K5*K7 - 2148*K3**2 - 584*K4**2 - 136*K5**2 - 12*K6**2 + 3710 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}]] |
If K is slice |
False |