Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.280

Min(phi) over symmetries of the knot is: [-4,-2,1,1,1,3,0,1,2,4,4,1,2,3,2,0,0,0,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.280']
Arrow polynomial of the knot is: -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.58', '6.76', '6.78', '6.90', '6.98', '6.154', '6.161', '6.162', '6.198', '6.280', '6.284', '6.345', '6.417', '6.421', '6.435', '6.511']
Outer characteristic polynomial of the knot is: t^7+90t^5+128t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.280']
2-strand cable arrow polynomial of the knot is: -352*K1**3*K3 + 128*K1**2*K2*K3**2 + 1040*K1**2*K2 - 2176*K1**2*K3**2 - 288*K1**2*K3*K5 - 32*K1**2*K4*K6 - 48*K1**2*K6**2 - 2744*K1**2 - 96*K1*K2**2*K3 - 384*K1*K2*K3*K4 + 3744*K1*K2*K3 - 32*K1*K3*K4*K6 + 2648*K1*K3*K4 + 424*K1*K4*K5 + 96*K1*K5*K6 + 88*K1*K6*K7 + 24*K1*K7*K8 - 320*K2**2*K3**2 - 8*K2**2*K4**2 + 176*K2**2*K4 - 8*K2**2*K6**2 - 1754*K2**2 + 752*K2*K3*K5 + 80*K2*K4*K6 + 8*K2*K5*K7 + 16*K2*K6*K8 + 16*K3**2*K6 - 2080*K3**2 + 8*K3*K4*K7 - 870*K4**2 - 380*K5**2 - 102*K6**2 - 44*K7**2 - 18*K8**2 + 2486
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.280']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16988', 'vk6.17231', 'vk6.20216', 'vk6.21508', 'vk6.23390', 'vk6.23700', 'vk6.27410', 'vk6.29025', 'vk6.35449', 'vk6.35891', 'vk6.38822', 'vk6.41009', 'vk6.42883', 'vk6.43186', 'vk6.45581', 'vk6.47351', 'vk6.55145', 'vk6.55395', 'vk6.57055', 'vk6.58178', 'vk6.59517', 'vk6.59869', 'vk6.61570', 'vk6.62741', 'vk6.64961', 'vk6.65168', 'vk6.66671', 'vk6.67508', 'vk6.68251', 'vk6.68409', 'vk6.69322', 'vk6.70077']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U5O6U2U4U3U6
R3 orbit {'O1O2O3O4O5U1U5O6U2U4U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U3U2U4O6U1U5
Gauss code of K* O1O2O3O4U5U1U3U2U6O5O6U4
Gauss code of -K* O1O2O3O4U1O5O6U5U3U2U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 -2 1 1 1 3],[ 4 0 2 4 3 1 3],[ 2 -2 0 2 1 0 3],[-1 -4 -2 0 0 0 2],[-1 -3 -1 0 0 0 1],[-1 -1 0 0 0 0 0],[-3 -3 -3 -2 -1 0 0]]
Primitive based matrix [[ 0 3 1 1 1 -2 -4],[-3 0 0 -1 -2 -3 -3],[-1 0 0 0 0 0 -1],[-1 1 0 0 0 -1 -3],[-1 2 0 0 0 -2 -4],[ 2 3 0 1 2 0 -2],[ 4 3 1 3 4 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,-1,2,4,0,1,2,3,3,0,0,0,1,0,1,3,2,4,2]
Phi over symmetry [-4,-2,1,1,1,3,0,1,2,4,4,1,2,3,2,0,0,0,0,1,2]
Phi of -K [-4,-2,1,1,1,3,0,1,2,4,4,1,2,3,2,0,0,0,0,1,2]
Phi of K* [-3,-1,-1,-1,2,4,0,1,2,2,4,0,0,1,1,0,2,2,3,4,0]
Phi of -K* [-4,-2,1,1,1,3,2,1,3,4,3,0,1,2,3,0,0,0,0,1,2]
Symmetry type of based matrix c
u-polynomial t^4-t^3+t^2-3t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+5w^3z^2-6w^3z+22w^2z+21w
Inner characteristic polynomial t^6+58t^4+47t^2
Outer characteristic polynomial t^7+90t^5+128t^3+7t
Flat arrow polynomial -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
2-strand cable arrow polynomial -352*K1**3*K3 + 128*K1**2*K2*K3**2 + 1040*K1**2*K2 - 2176*K1**2*K3**2 - 288*K1**2*K3*K5 - 32*K1**2*K4*K6 - 48*K1**2*K6**2 - 2744*K1**2 - 96*K1*K2**2*K3 - 384*K1*K2*K3*K4 + 3744*K1*K2*K3 - 32*K1*K3*K4*K6 + 2648*K1*K3*K4 + 424*K1*K4*K5 + 96*K1*K5*K6 + 88*K1*K6*K7 + 24*K1*K7*K8 - 320*K2**2*K3**2 - 8*K2**2*K4**2 + 176*K2**2*K4 - 8*K2**2*K6**2 - 1754*K2**2 + 752*K2*K3*K5 + 80*K2*K4*K6 + 8*K2*K5*K7 + 16*K2*K6*K8 + 16*K3**2*K6 - 2080*K3**2 + 8*K3*K4*K7 - 870*K4**2 - 380*K5**2 - 102*K6**2 - 44*K7**2 - 18*K8**2 + 2486
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact