Gauss code |
O1O2O3O4O5U1U5O6U2U6U4U3 |
R3 orbit |
{'O1O2O3O4O5U1U5O6U2U6U4U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U2U6U4O6U1U5 |
Gauss code of K* |
O1O2O3O4U5U1U4U3U6O5O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5O6U5U2U1U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 2 2 1 1],[ 4 0 2 4 3 1 1],[ 2 -2 0 3 2 0 1],[-2 -4 -3 0 0 0 0],[-2 -3 -2 0 0 0 0],[-1 -1 0 0 0 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 1 -2 -4],[-2 0 0 0 0 -2 -3],[-2 0 0 0 0 -3 -4],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 -1 -1],[ 2 2 3 0 1 0 -2],[ 4 3 4 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,-1,2,4,0,0,0,2,3,0,0,3,4,0,0,1,1,1,2] |
Phi over symmetry |
[-4,-2,1,1,2,2,0,4,4,2,3,2,3,1,2,0,1,1,1,1,0] |
Phi of -K |
[-4,-2,1,1,2,2,0,4,4,2,3,2,3,1,2,0,1,1,1,1,0] |
Phi of K* |
[-2,-2,-1,-1,2,4,0,1,1,1,2,1,1,2,3,0,2,4,3,4,0] |
Phi of -K* |
[-4,-2,1,1,2,2,2,1,1,3,4,0,1,2,3,0,0,0,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
2z^2+15z+23 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2-8w^3z+23w^2z+23w |
Inner characteristic polynomial |
t^6+45t^4+17t^2 |
Outer characteristic polynomial |
t^7+75t^5+70t^3+7t |
Flat arrow polynomial |
-4*K1*K2 - 2*K1*K3 + 2*K1 + K2 + 2*K3 + K4 + 1 |
2-strand cable arrow polynomial |
-416*K1**4 + 320*K1**3*K2*K3 + 96*K1**3*K3*K4 - 704*K1**3*K3 - 640*K1**2*K2**2 - 256*K1**2*K2*K4 + 2824*K1**2*K2 - 1024*K1**2*K3**2 - 32*K1**2*K3*K5 - 272*K1**2*K4**2 - 64*K1**2*K4*K6 - 3976*K1**2 - 224*K1*K2**2*K3 - 32*K1*K2**2*K5 - 640*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4208*K1*K2*K3 + 2192*K1*K3*K4 + 824*K1*K4*K5 + 152*K1*K5*K6 + 32*K1*K6*K7 - 32*K2**4 - 32*K2**3*K6 - 192*K2**2*K3**2 - 80*K2**2*K4**2 + 928*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 3152*K2**2 + 808*K2*K3*K5 + 280*K2*K4*K6 + 32*K2*K5*K7 + 8*K2*K6*K8 + 40*K3**2*K6 - 2400*K3**2 - 1394*K4**2 - 580*K5**2 - 200*K6**2 - 28*K7**2 - 2*K8**2 + 3682 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
False |