Min(phi) over symmetries of the knot is: [-4,-1,0,1,1,3,1,0,2,4,4,0,1,2,2,0,1,0,0,1,2] |
Flat knots (up to 7 crossings) with same phi are :['6.286'] |
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 2*K2 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.172', '6.274', '6.286', '6.423', '6.461'] |
Outer characteristic polynomial of the knot is: t^7+84t^5+76t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.286'] |
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 224*K1**4*K2 - 1824*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 - 320*K1**3*K3 - 1152*K1**2*K2**4 - 640*K1**2*K2**3*K4 + 2208*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 5168*K1**2*K2**2 - 576*K1**2*K2*K4 + 5352*K1**2*K2 - 384*K1**2*K3**2 - 32*K1**2*K4**2 - 2960*K1**2 + 2080*K1*K2**3*K3 + 640*K1*K2**2*K3*K4 - 800*K1*K2**2*K3 - 32*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 4568*K1*K2*K3 + 936*K1*K3*K4 + 152*K1*K4*K5 - 32*K2**6 - 192*K2**4*K3**2 - 288*K2**4*K4**2 + 832*K2**4*K4 - 2152*K2**4 + 128*K2**3*K3*K5 + 160*K2**3*K4*K6 - 32*K2**3*K6 - 896*K2**2*K3**2 - 616*K2**2*K4**2 + 1264*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 1364*K2**2 + 272*K2*K3*K5 + 112*K2*K4*K6 - 1312*K3**2 - 584*K4**2 - 96*K5**2 - 4*K6**2 + 2710 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.286'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17084', 'vk6.17327', 'vk6.20252', 'vk6.21557', 'vk6.23466', 'vk6.23806', 'vk6.27481', 'vk6.29076', 'vk6.35603', 'vk6.36055', 'vk6.38896', 'vk6.41096', 'vk6.42976', 'vk6.43290', 'vk6.45653', 'vk6.47386', 'vk6.55217', 'vk6.55472', 'vk6.57082', 'vk6.58236', 'vk6.59615', 'vk6.59961', 'vk6.61629', 'vk6.62810', 'vk6.65020', 'vk6.65226', 'vk6.66715', 'vk6.67572', 'vk6.68290', 'vk6.68442', 'vk6.69362', 'vk6.70104'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U1U5O6U3U4U2U6 |
R3 orbit | {'O1O2O3O4O5U1U5O6U3U4U2U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U6U4U2U3O6U1U5 |
Gauss code of K* | O1O2O3O4U5U3U1U2U6O5O6U4 |
Gauss code of -K* | O1O2O3O4U1O5O6U5U3U4U2U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 0 -1 1 1 3],[ 4 0 4 2 3 1 3],[ 0 -4 0 -1 1 0 3],[ 1 -2 1 0 1 0 2],[-1 -3 -1 -1 0 0 1],[-1 -1 0 0 0 0 0],[-3 -3 -3 -2 -1 0 0]] |
Primitive based matrix | [[ 0 3 1 1 0 -1 -4],[-3 0 0 -1 -3 -2 -3],[-1 0 0 0 0 0 -1],[-1 1 0 0 -1 -1 -3],[ 0 3 0 1 0 -1 -4],[ 1 2 0 1 1 0 -2],[ 4 3 1 3 4 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,-1,0,1,4,0,1,3,2,3,0,0,0,1,1,1,3,1,4,2] |
Phi over symmetry | [-4,-1,0,1,1,3,1,0,2,4,4,0,1,2,2,0,1,0,0,1,2] |
Phi of -K | [-4,-1,0,1,1,3,1,0,2,4,4,0,1,2,2,0,1,0,0,1,2] |
Phi of K* | [-3,-1,-1,0,1,4,1,2,0,2,4,0,0,1,2,1,2,4,0,0,1] |
Phi of -K* | [-4,-1,0,1,1,3,2,4,1,3,3,1,0,1,2,0,1,3,0,0,1] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^3-t |
Normalized Jones-Krushkal polynomial | 2z^2+15z+23 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+4w^3z^2-6w^3z+21w^2z+23w |
Inner characteristic polynomial | t^6+56t^4+24t^2 |
Outer characteristic polynomial | t^7+84t^5+76t^3+7t |
Flat arrow polynomial | 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial | -192*K1**4*K2**2 + 224*K1**4*K2 - 1824*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 - 320*K1**3*K3 - 1152*K1**2*K2**4 - 640*K1**2*K2**3*K4 + 2208*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 5168*K1**2*K2**2 - 576*K1**2*K2*K4 + 5352*K1**2*K2 - 384*K1**2*K3**2 - 32*K1**2*K4**2 - 2960*K1**2 + 2080*K1*K2**3*K3 + 640*K1*K2**2*K3*K4 - 800*K1*K2**2*K3 - 32*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 4568*K1*K2*K3 + 936*K1*K3*K4 + 152*K1*K4*K5 - 32*K2**6 - 192*K2**4*K3**2 - 288*K2**4*K4**2 + 832*K2**4*K4 - 2152*K2**4 + 128*K2**3*K3*K5 + 160*K2**3*K4*K6 - 32*K2**3*K6 - 896*K2**2*K3**2 - 616*K2**2*K4**2 + 1264*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 1364*K2**2 + 272*K2*K3*K5 + 112*K2*K4*K6 - 1312*K3**2 - 584*K4**2 - 96*K5**2 - 4*K6**2 + 2710 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |