| Gauss code |
O1O2O3O4O5U1U5O6U3U4U6U2 |
| R3 orbit |
{'O1O2O3O4O5U1U5O6U3U4U6U2', 'O1O2O3O4O5U1U5U2O6U4U3U6'} |
| R3 orbit length |
2 |
| Gauss code of -K |
O1O2O3O4O5U4U6U2U3O6U1U5 |
| Gauss code of K* |
O1O2O3O4U5U4U1U2U6O5O6U3 |
| Gauss code of -K* |
O1O2O3O4U2O5O6U5U3U4U1U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -4 1 -1 1 1 2],[ 4 0 4 2 3 1 2],[-1 -4 0 -2 0 0 2],[ 1 -2 2 0 1 0 2],[-1 -3 0 -1 0 0 1],[-1 -1 0 0 0 0 0],[-2 -2 -2 -2 -1 0 0]] |
| Primitive based matrix |
[[ 0 2 1 1 1 -1 -4],[-2 0 0 -1 -2 -2 -2],[-1 0 0 0 0 0 -1],[-1 1 0 0 0 -1 -3],[-1 2 0 0 0 -2 -4],[ 1 2 0 1 2 0 -2],[ 4 2 1 3 4 2 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,-1,-1,1,4,0,1,2,2,2,0,0,0,1,0,1,3,2,4,2] |
| Phi over symmetry |
[-4,-1,1,1,1,2,1,1,2,4,4,0,1,2,1,0,0,-1,0,0,1] |
| Phi of -K |
[-4,-1,1,1,1,2,1,1,2,4,4,0,1,2,1,0,0,-1,0,0,1] |
| Phi of K* |
[-2,-1,-1,-1,1,4,-1,0,1,1,4,0,0,0,1,0,1,2,2,4,1] |
| Phi of -K* |
[-4,-1,1,1,1,2,2,1,3,4,2,0,1,2,2,0,0,0,0,1,2] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^4-t^2-2t |
| Normalized Jones-Krushkal polynomial |
6z^2+19z+15 |
| Enhanced Jones-Krushkal polynomial |
6w^3z^2+19w^2z+15w |
| Inner characteristic polynomial |
t^6+48t^4+26t^2 |
| Outer characteristic polynomial |
t^7+72t^5+79t^3+3t |
| Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 4*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 + K2 + K3 + 2 |
| 2-strand cable arrow polynomial |
-192*K1**2*K2**4 + 640*K1**2*K2**3 - 2736*K1**2*K2**2 - 320*K1**2*K2*K4 + 2368*K1**2*K2 - 1728*K1**2 + 512*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 672*K1*K2**2*K3 - 384*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2944*K1*K2*K3 - 32*K1*K2*K4*K5 + 296*K1*K3*K4 + 56*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1200*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 560*K2**2*K3**2 - 192*K2**2*K4**2 + 1216*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 1118*K2**2 + 576*K2*K3*K5 + 80*K2*K4*K6 + 24*K2*K5*K7 - 760*K3**2 - 266*K4**2 - 136*K5**2 - 10*K6**2 + 1400 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}]] |
| If K is slice |
False |