Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.292

Min(phi) over symmetries of the knot is: [-4,0,0,0,1,3,0,1,2,4,4,0,0,1,0,0,1,1,1,2,2]
Flat knots (up to 7 crossings) with same phi are :['6.292']
Arrow polynomial of the knot is: -2*K1*K2 + K1 - 2*K2**2 + K3 + K4 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.95', '6.107', '6.276', '6.292', '6.394', '6.429', '6.463']
Outer characteristic polynomial of the knot is: t^7+79t^5+68t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.292']
2-strand cable arrow polynomial of the knot is: -144*K1**4 + 96*K1**3*K3*K4 + 768*K1**2*K2 - 688*K1**2*K3**2 - 384*K1**2*K3*K5 - 192*K1**2*K4**2 - 1628*K1**2 - 320*K1*K2*K3*K4 + 952*K1*K2*K3 + 1712*K1*K3*K4 + 840*K1*K4*K5 - 8*K2**2*K4**2 + 240*K2**2*K4 - 990*K2**2 + 656*K2*K3*K5 + 8*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**2*K4**2 - 1144*K3**2 + 24*K3*K4*K7 + 24*K3*K5*K8 - 8*K4**4 + 16*K4**2*K8 - 904*K4**2 - 552*K5**2 - 2*K6**2 - 12*K7**2 - 18*K8**2 + 1664
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.292']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17118', 'vk6.17361', 'vk6.20261', 'vk6.21572', 'vk6.23514', 'vk6.23850', 'vk6.27511', 'vk6.29095', 'vk6.35667', 'vk6.36098', 'vk6.38918', 'vk6.41127', 'vk6.43022', 'vk6.43331', 'vk6.45669', 'vk6.47396', 'vk6.55263', 'vk6.55513', 'vk6.57088', 'vk6.58248', 'vk6.59672', 'vk6.60017', 'vk6.61652', 'vk6.62824', 'vk6.65068', 'vk6.65259', 'vk6.66727', 'vk6.67593', 'vk6.68326', 'vk6.68475', 'vk6.69373', 'vk6.70111']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U5O6U4U3U2U6
R3 orbit {'O1O2O3O4O5U1U5O6U4U3U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U4U3U2O6U1U5
Gauss code of K* O1O2O3O4U5U3U2U1U6O5O6U4
Gauss code of -K* O1O2O3O4U1O5O6U5U4U3U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 0 0 0 1 3],[ 4 0 4 3 2 1 3],[ 0 -4 0 0 0 0 3],[ 0 -3 0 0 0 0 2],[ 0 -2 0 0 0 0 1],[-1 -1 0 0 0 0 0],[-3 -3 -3 -2 -1 0 0]]
Primitive based matrix [[ 0 3 1 0 0 0 -4],[-3 0 0 -1 -2 -3 -3],[-1 0 0 0 0 0 -1],[ 0 1 0 0 0 0 -2],[ 0 2 0 0 0 0 -3],[ 0 3 0 0 0 0 -4],[ 4 3 1 2 3 4 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,0,0,4,0,1,2,3,3,0,0,0,1,0,0,2,0,3,4]
Phi over symmetry [-4,0,0,0,1,3,0,1,2,4,4,0,0,1,0,0,1,1,1,2,2]
Phi of -K [-4,0,0,0,1,3,0,1,2,4,4,0,0,1,0,0,1,1,1,2,2]
Phi of K* [-3,-1,0,0,0,4,2,0,1,2,4,1,1,1,4,0,0,0,0,1,2]
Phi of -K* [-4,0,0,0,1,3,2,3,4,1,3,0,0,0,1,0,0,2,0,3,0]
Symmetry type of based matrix c
u-polynomial t^4-t^3-t
Normalized Jones-Krushkal polynomial 5z+11
Enhanced Jones-Krushkal polynomial -4w^4z^2+4w^3z^2-12w^3z+17w^2z+11w
Inner characteristic polynomial t^6+53t^4+20t^2
Outer characteristic polynomial t^7+79t^5+68t^3+6t
Flat arrow polynomial -2*K1*K2 + K1 - 2*K2**2 + K3 + K4 + 2
2-strand cable arrow polynomial -144*K1**4 + 96*K1**3*K3*K4 + 768*K1**2*K2 - 688*K1**2*K3**2 - 384*K1**2*K3*K5 - 192*K1**2*K4**2 - 1628*K1**2 - 320*K1*K2*K3*K4 + 952*K1*K2*K3 + 1712*K1*K3*K4 + 840*K1*K4*K5 - 8*K2**2*K4**2 + 240*K2**2*K4 - 990*K2**2 + 656*K2*K3*K5 + 8*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**2*K4**2 - 1144*K3**2 + 24*K3*K4*K7 + 24*K3*K5*K8 - 8*K4**4 + 16*K4**2*K8 - 904*K4**2 - 552*K5**2 - 2*K6**2 - 12*K7**2 - 18*K8**2 + 1664
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact