Gauss code |
O1O2O3O4O5O6U1U4U3U2U6U5 |
R3 orbit |
{'O1O2O3O4O5O6U1U4U3U2U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U2U1U5U4U3U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5O6U2U1U5U4U3U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -1 -1 -1 4 4],[ 5 0 3 2 1 5 4],[ 1 -3 0 0 0 4 3],[ 1 -2 0 0 0 3 2],[ 1 -1 0 0 0 2 1],[-4 -5 -4 -3 -2 0 0],[-4 -4 -3 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 4 4 -1 -1 -1 -5],[-4 0 0 -1 -2 -3 -4],[-4 0 0 -2 -3 -4 -5],[ 1 1 2 0 0 0 -1],[ 1 2 3 0 0 0 -2],[ 1 3 4 0 0 0 -3],[ 5 4 5 1 2 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-4,1,1,1,5,0,1,2,3,4,2,3,4,5,0,0,1,0,2,3] |
Phi over symmetry |
[-5,-1,-1,-1,4,4,1,2,3,4,5,0,0,1,2,0,2,3,3,4,0] |
Phi of -K |
[-5,-1,-1,-1,4,4,1,2,3,4,5,0,0,1,2,0,2,3,3,4,0] |
Phi of K* |
[-4,-4,1,1,1,5,0,1,2,3,4,2,3,4,5,0,0,1,0,2,3] |
Phi of -K* |
[-5,-1,-1,-1,4,4,1,2,3,4,5,0,0,1,2,0,2,3,3,4,0] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^5-2t^4+3t |
Normalized Jones-Krushkal polynomial |
z+3 |
Enhanced Jones-Krushkal polynomial |
-8w^5z+8w^4z-6w^3z+7w^2z+3w |
Inner characteristic polynomial |
t^6+98t^4+26t^2 |
Outer characteristic polynomial |
t^7+158t^5+136t^3 |
Flat arrow polynomial |
K1 - 2*K2*K3 + K5 + 1 |
2-strand cable arrow polynomial |
-576*K1**2*K4**2 - 488*K1**2 + 336*K1*K3*K4 + 64*K1*K4**3*K5 + 1104*K1*K4*K5 + 96*K1*K5*K6 - 2*K10**2 + 8*K10*K4*K6 - 18*K2**2 + 40*K2*K4*K6 - 32*K3**2 - 32*K4**4 - 64*K4**2*K5**2 - 8*K4**2*K6**2 - 428*K4**2 + 16*K4*K5*K9 - 456*K5**2 - 68*K6**2 + 506 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}]] |
If K is slice |
False |