Gauss code |
O1O2O3O4O5U2U3O6U4U1U5U6 |
R3 orbit |
{'O1O2O3O4O5U2U3O6U4U1U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U1U5U2O6U3U4 |
Gauss code of K* |
O1O2O3O4U2U5U6U1U3O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U2U4U5U6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -3 -1 0 3 3],[ 2 0 -2 0 2 4 3],[ 3 2 0 1 2 3 2],[ 1 0 -1 0 1 2 2],[ 0 -2 -2 -1 0 1 2],[-3 -4 -3 -2 -1 0 1],[-3 -3 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 3 0 -1 -2 -3],[-3 0 1 -1 -2 -4 -3],[-3 -1 0 -2 -2 -3 -2],[ 0 1 2 0 -1 -2 -2],[ 1 2 2 1 0 0 -1],[ 2 4 3 2 0 0 -2],[ 3 3 2 2 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,0,1,2,3,-1,1,2,4,3,2,2,3,2,1,2,2,0,1,2] |
Phi over symmetry |
[-3,-3,0,1,2,3,-1,1,2,2,4,2,2,1,3,0,0,1,1,1,-1] |
Phi of -K |
[-3,-2,-1,0,3,3,-1,1,1,3,4,1,0,1,2,0,2,2,2,1,-1] |
Phi of K* |
[-3,-3,0,1,2,3,-1,1,2,2,4,2,2,1,3,0,0,1,1,1,-1] |
Phi of -K* |
[-3,-2,-1,0,3,3,2,1,2,2,3,0,2,3,4,1,2,2,2,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+6w^3z^2-6w^3z+23w^2z+19w |
Inner characteristic polynomial |
t^6+66t^4+26t^2 |
Outer characteristic polynomial |
t^7+98t^5+79t^3+7t |
Flat arrow polynomial |
4*K1**3 - 6*K1**2 - 6*K1*K2 + 3*K2 + 2*K3 + 4 |
2-strand cable arrow polynomial |
-64*K1**4*K2**2 + 64*K1**4*K2 - 80*K1**4 + 128*K1**3*K2**3*K3 - 128*K1**3*K2**2*K3 + 128*K1**3*K2*K3 - 192*K1**3*K3 - 1920*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 2912*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 5856*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 256*K1**2*K2*K4 + 4672*K1**2*K2 - 208*K1**2*K3**2 - 16*K1**2*K4**2 - 4040*K1**2 - 128*K1*K2**4*K3 + 3008*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1344*K1*K2**2*K3 - 256*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 5712*K1*K2*K3 + 600*K1*K3*K4 + 96*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 160*K2**4*K4 - 2680*K2**4 - 1472*K2**2*K3**2 - 120*K2**2*K4**2 + 1632*K2**2*K4 - 1636*K2**2 + 680*K2*K3*K5 + 24*K2*K4*K6 - 32*K3**4 + 32*K3**2*K6 - 1772*K3**2 - 446*K4**2 - 164*K5**2 - 28*K6**2 + 3124 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |