Gauss code |
O1O2O3O4O5U2U5O6U1U4U6U3 |
R3 orbit |
{'O1O2O3O4O5U2U5O6U1U4U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U6U2U5O6U1U4 |
Gauss code of K* |
O1O2O3O4U1U5U4U2U6O5O6U3 |
Gauss code of -K* |
O1O2O3O4U2O5O6U5U3U1U6U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -3 2 1 1 2],[ 3 0 -1 4 2 1 2],[ 3 1 0 3 2 1 1],[-2 -4 -3 0 -1 0 1],[-1 -2 -2 1 0 0 1],[-1 -1 -1 0 0 0 0],[-2 -2 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 1 -3 -3],[-2 0 1 0 -1 -3 -4],[-2 -1 0 0 -1 -1 -2],[-1 0 0 0 0 -1 -1],[-1 1 1 0 0 -2 -2],[ 3 3 1 1 2 0 1],[ 3 4 2 1 2 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,-1,3,3,-1,0,1,3,4,0,1,1,2,0,1,1,2,2,-1] |
Phi over symmetry |
[-3,-3,1,1,2,2,-1,1,2,2,4,1,2,1,3,0,0,0,1,1,-1] |
Phi of -K |
[-3,-3,1,1,2,2,-1,2,3,2,4,2,3,1,3,0,0,0,1,1,-1] |
Phi of K* |
[-2,-2,-1,-1,3,3,-1,0,1,3,4,0,1,1,2,0,2,2,3,3,-1] |
Phi of -K* |
[-3,-3,1,1,2,2,-1,1,2,2,4,1,2,1,3,0,0,0,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
2t^3-2t^2-2t |
Normalized Jones-Krushkal polynomial |
3z^2+20z+29 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+20w^2z+29w |
Inner characteristic polynomial |
t^6+44t^4+11t^2 |
Outer characteristic polynomial |
t^7+72t^5+43t^3+4t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 8*K1**2 - 8*K1*K2 - 4*K1*K3 - 2*K1 + 4*K2 + 2*K3 + K4 + 4 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 384*K1**4*K2 - 1680*K1**4 + 352*K1**3*K2*K3 - 256*K1**3*K3 - 256*K1**2*K2**4 + 608*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 4832*K1**2*K2**2 - 608*K1**2*K2*K4 + 6488*K1**2*K2 - 496*K1**2*K3**2 - 128*K1**2*K3*K5 - 48*K1**2*K4**2 - 32*K1**2*K5**2 - 4488*K1**2 + 864*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 864*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 512*K1*K2**2*K5 - 384*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 6392*K1*K2*K3 - 64*K1*K2*K4*K5 - 64*K1*K2*K5*K6 - 32*K1*K3**2*K5 + 1456*K1*K3*K4 + 392*K1*K4*K5 + 88*K1*K5*K6 + 8*K1*K6*K7 - 64*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 128*K2**4*K4 - 1312*K2**4 + 160*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 944*K2**2*K3**2 - 32*K2**2*K3*K7 - 320*K2**2*K4**2 + 1824*K2**2*K4 - 144*K2**2*K5**2 - 48*K2**2*K6**2 - 3540*K2**2 + 1152*K2*K3*K5 + 320*K2*K4*K6 + 88*K2*K5*K7 + 16*K2*K6*K8 + 56*K3**2*K6 - 2168*K3**2 + 8*K3*K4*K7 - 892*K4**2 - 352*K5**2 - 92*K6**2 - 16*K7**2 - 2*K8**2 + 4012 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
False |