Gauss code |
O1O2O3O4O5O6U1U4U5U2U6U3 |
R3 orbit |
{'O1O2O3O4O5O6U1U4U5U2U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U4U1U5U2U3U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U4U6U2U3U5 |
Gauss code of -K* |
O1O2O3O4O5O6U2U4U5U1U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -1 2 -1 1 4],[ 5 0 3 5 1 2 4],[ 1 -3 0 2 -1 1 3],[-2 -5 -2 0 -2 0 2],[ 1 -1 1 2 0 1 2],[-1 -2 -1 0 -1 0 1],[-4 -4 -3 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 4 2 1 -1 -1 -5],[-4 0 -2 -1 -2 -3 -4],[-2 2 0 0 -2 -2 -5],[-1 1 0 0 -1 -1 -2],[ 1 2 2 1 0 1 -1],[ 1 3 2 1 -1 0 -3],[ 5 4 5 2 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,-1,1,1,5,2,1,2,3,4,0,2,2,5,1,1,2,-1,1,3] |
Phi over symmetry |
[-5,-1,-1,1,2,4,1,3,2,5,4,1,1,2,2,1,2,3,0,1,2] |
Phi of -K |
[-5,-1,-1,1,2,4,1,3,4,2,5,1,1,1,2,1,1,3,1,2,0] |
Phi of K* |
[-4,-2,-1,1,1,5,0,2,2,3,5,1,1,1,2,1,1,4,-1,1,3] |
Phi of -K* |
[-5,-1,-1,1,2,4,1,3,2,5,4,1,1,2,2,1,2,3,0,1,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-t^4-t^2+t |
Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+23w^2z+23w |
Inner characteristic polynomial |
t^6+84t^4+8t^2 |
Outer characteristic polynomial |
t^7+132t^5+61t^3+4t |
Flat arrow polynomial |
4*K1**2*K2 + 4*K1**2*K3 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 2*K1*K4 + 2*K1 + 3*K2 + 2*K3 + 4 |
2-strand cable arrow polynomial |
-144*K1**4 + 256*K1**3*K2*K3 + 32*K1**3*K3*K4 - 320*K1**3*K3 + 64*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 - 3408*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 544*K1**2*K2*K4 + 4320*K1**2*K2 - 496*K1**2*K3**2 - 64*K1**2*K3*K5 - 32*K1**2*K4**2 - 4120*K1**2 + 1984*K1*K2**3*K3 + 352*K1*K2**2*K3*K4 - 1280*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 + 64*K1*K2**2*K5*K6 - 416*K1*K2**2*K5 + 32*K1*K2**2*K6*K7 + 32*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 544*K1*K2*K3*K4 - 160*K1*K2*K3*K6 + 6192*K1*K2*K3 - 64*K1*K2*K4*K5 - 32*K1*K2*K4*K7 - 64*K1*K2*K5*K6 + 1200*K1*K3*K4 + 208*K1*K4*K5 + 64*K1*K5*K6 + 16*K1*K6*K7 - 384*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 32*K2**4*K6**2 - 1840*K2**4 + 352*K2**3*K3*K5 + 96*K2**3*K4*K6 + 32*K2**3*K5*K7 + 32*K2**3*K6*K8 - 32*K2**3*K6 + 64*K2**2*K3**2*K4 - 1872*K2**2*K3**2 - 96*K2**2*K3*K7 - 424*K2**2*K4**2 - 32*K2**2*K4*K8 + 1968*K2**2*K4 - 160*K2**2*K5**2 - 104*K2**2*K6**2 - 32*K2**2*K7**2 - 8*K2**2*K8**2 - 2720*K2**2 - 32*K2*K3**2*K4 + 1224*K2*K3*K5 + 336*K2*K4*K6 + 112*K2*K5*K7 + 32*K2*K6*K8 - 32*K3**2*K4**2 + 8*K3**2*K6 - 2076*K3**2 - 686*K4**2 - 252*K5**2 - 80*K6**2 - 16*K7**2 - 4*K8**2 + 3336 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}]] |
If K is slice |
False |