Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.340

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,2,3,3,2,1,2,2,2,0,0,1,0,2,2]
Flat knots (up to 7 crossings) with same phi are :['6.340']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1*K2 - 2*K1 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.233', '6.340', '6.382', '6.550', '6.656', '6.663', '6.683', '6.698', '6.739', '6.745', '6.759', '6.765', '6.1357', '6.1358', '6.1370']
Outer characteristic polynomial of the knot is: t^7+68t^5+48t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.340']
2-strand cable arrow polynomial of the knot is: -192*K1**2*K2**4 + 288*K1**2*K2**3 - 1808*K1**2*K2**2 + 1504*K1**2*K2 - 848*K1**2 + 128*K1*K2**3*K3 + 1088*K1*K2*K3 - 32*K2**6 + 32*K2**4*K4 - 448*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 248*K2**2*K4 - 288*K2**2 - 144*K3**2 - 40*K4**2 + 534
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.340']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17006', 'vk6.17247', 'vk6.17541', 'vk6.17549', 'vk6.17596', 'vk6.17604', 'vk6.21917', 'vk6.24049', 'vk6.24059', 'vk6.24151', 'vk6.27972', 'vk6.29445', 'vk6.35482', 'vk6.35931', 'vk6.36325', 'vk6.36337', 'vk6.36402', 'vk6.39376', 'vk6.41561', 'vk6.43450', 'vk6.43458', 'vk6.43502', 'vk6.45946', 'vk6.47628', 'vk6.55181', 'vk6.55423', 'vk6.55631', 'vk6.55639', 'vk6.55662', 'vk6.58566', 'vk6.60149', 'vk6.60212', 'vk6.62055', 'vk6.63046', 'vk6.64979', 'vk6.65187', 'vk6.65332', 'vk6.65371', 'vk6.68502', 'vk6.68529']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U3U1O6U5U4U6U2
R3 orbit {'O1O2O3O4O5U3U1O6U5U4U6U2', 'O1O2O3O4U5U1O6U4U3U6O5U2'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U4U6U2U1O6U5U3
Gauss code of K* O1O2O3O4U5U4U6U2U1O6O5U3
Gauss code of -K* O1O2O3O4U2O5O6U4U3U6U1U5
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 1 -2 1 1 2],[ 3 0 3 0 3 2 2],[-1 -3 0 -2 0 0 2],[ 2 0 2 0 2 1 2],[-1 -3 0 -2 0 0 2],[-1 -2 0 -1 0 0 1],[-2 -2 -2 -2 -2 -1 0]]
Primitive based matrix [[ 0 2 1 1 1 -2 -3],[-2 0 -1 -2 -2 -2 -2],[-1 1 0 0 0 -1 -2],[-1 2 0 0 0 -2 -3],[-1 2 0 0 0 -2 -3],[ 2 2 1 2 2 0 0],[ 3 2 2 3 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,-1,2,3,1,2,2,2,2,0,0,1,2,0,2,3,2,3,0]
Phi over symmetry [-3,-2,1,1,1,2,0,2,3,3,2,1,2,2,2,0,0,1,0,2,2]
Phi of -K [-3,-2,1,1,1,2,1,1,1,2,3,1,1,2,2,0,0,-1,0,-1,0]
Phi of K* [-2,-1,-1,-1,2,3,-1,-1,0,2,3,0,0,1,1,0,1,1,2,2,1]
Phi of -K* [-3,-2,1,1,1,2,0,2,3,3,2,1,2,2,2,0,0,1,0,2,2]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial z+3
Enhanced Jones-Krushkal polynomial -12w^3z+13w^2z+3w
Inner characteristic polynomial t^6+48t^4+16t^2
Outer characteristic polynomial t^7+68t^5+48t^3
Flat arrow polynomial 4*K1**3 - 2*K1*K2 - 2*K1 + 1
2-strand cable arrow polynomial -192*K1**2*K2**4 + 288*K1**2*K2**3 - 1808*K1**2*K2**2 + 1504*K1**2*K2 - 848*K1**2 + 128*K1*K2**3*K3 + 1088*K1*K2*K3 - 32*K2**6 + 32*K2**4*K4 - 448*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 248*K2**2*K4 - 288*K2**2 - 144*K3**2 - 40*K4**2 + 534
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact