Min(phi) over symmetries of the knot is: [-4,-2,-1,2,2,3,0,2,2,3,5,1,1,1,2,1,2,3,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.343'] |
Arrow polynomial of the knot is: 4*K1**2*K2 - 2*K1**2 - 2*K1*K2 + K1 - 2*K2**2 - K2 + K3 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.150', '6.343', '6.489'] |
Outer characteristic polynomial of the knot is: t^7+101t^5+64t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.343'] |
2-strand cable arrow polynomial of the knot is: -288*K1**4 + 96*K1**3*K3*K4 - 1088*K1**2*K2**2 + 32*K1**2*K2*K4**2 - 992*K1**2*K2*K4 + 3440*K1**2*K2 - 320*K1**2*K3**2 - 192*K1**2*K3*K5 - 384*K1**2*K4**2 - 4224*K1**2 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 + 160*K1*K2*K3*K4**2 - 576*K1*K2*K3*K4 + 3824*K1*K2*K3 - 32*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 2600*K1*K3*K4 + 760*K1*K4*K5 - 32*K2**4*K4**2 + 128*K2**4*K4 - 488*K2**4 + 96*K2**2*K3**2*K4 - 256*K2**2*K3**2 + 32*K2**2*K4**3 - 504*K2**2*K4**2 + 2080*K2**2*K4 - 3554*K2**2 - 96*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 616*K2*K3*K5 + 352*K2*K4*K6 - 160*K3**2*K4**2 + 8*K3**2*K6 - 2024*K3**2 + 64*K3*K4*K7 - 8*K4**4 - 1670*K4**2 - 360*K5**2 - 54*K6**2 + 3716 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.343'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71585', 'vk6.71709', 'vk6.72128', 'vk6.72324', 'vk6.73488', 'vk6.74111', 'vk6.74128', 'vk6.74680', 'vk6.74697', 'vk6.75243', 'vk6.75494', 'vk6.76149', 'vk6.76169', 'vk6.77201', 'vk6.77307', 'vk6.77511', 'vk6.77661', 'vk6.78451', 'vk6.79113', 'vk6.79129', 'vk6.80035', 'vk6.80185', 'vk6.80621', 'vk6.80633', 'vk6.83735', 'vk6.83861', 'vk6.85065', 'vk6.85341', 'vk6.86665', 'vk6.86981', 'vk6.87423', 'vk6.89543'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U3U2O6U1U4U6U5 |
R3 orbit | {'O1O2O3O4O5U3U2O6U1U4U6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U1U6U2U5O6U4U3 |
Gauss code of K* | O1O2O3O4U1U5U6U2U4O6O5U3 |
Gauss code of -K* | O1O2O3O4U2O5O6U1U3U6U5U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -2 -2 1 4 2],[ 3 0 0 0 3 5 2],[ 2 0 0 0 2 3 1],[ 2 0 0 0 1 2 1],[-1 -3 -2 -1 0 2 1],[-4 -5 -3 -2 -2 0 0],[-2 -2 -1 -1 -1 0 0]] |
Primitive based matrix | [[ 0 4 2 1 -2 -2 -3],[-4 0 0 -2 -2 -3 -5],[-2 0 0 -1 -1 -1 -2],[-1 2 1 0 -1 -2 -3],[ 2 2 1 1 0 0 0],[ 2 3 1 2 0 0 0],[ 3 5 2 3 0 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-4,-2,-1,2,2,3,0,2,2,3,5,1,1,1,2,1,2,3,0,0,0] |
Phi over symmetry | [-4,-2,-1,2,2,3,0,2,2,3,5,1,1,1,2,1,2,3,0,0,0] |
Phi of -K | [-3,-2,-2,1,2,4,1,1,1,3,2,0,1,3,3,2,3,4,0,1,2] |
Phi of K* | [-4,-2,-1,2,2,3,2,1,3,4,2,0,3,3,3,1,2,1,0,1,1] |
Phi of -K* | [-3,-2,-2,1,2,4,0,0,3,2,5,0,1,1,2,2,1,3,1,2,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^4+t^3+t^2-t |
Normalized Jones-Krushkal polynomial | 7z^2+26z+25 |
Enhanced Jones-Krushkal polynomial | 7w^3z^2+26w^2z+25w |
Inner characteristic polynomial | t^6+63t^4+11t^2 |
Outer characteristic polynomial | t^7+101t^5+64t^3+5t |
Flat arrow polynomial | 4*K1**2*K2 - 2*K1**2 - 2*K1*K2 + K1 - 2*K2**2 - K2 + K3 + 2 |
2-strand cable arrow polynomial | -288*K1**4 + 96*K1**3*K3*K4 - 1088*K1**2*K2**2 + 32*K1**2*K2*K4**2 - 992*K1**2*K2*K4 + 3440*K1**2*K2 - 320*K1**2*K3**2 - 192*K1**2*K3*K5 - 384*K1**2*K4**2 - 4224*K1**2 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 + 160*K1*K2*K3*K4**2 - 576*K1*K2*K3*K4 + 3824*K1*K2*K3 - 32*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 2600*K1*K3*K4 + 760*K1*K4*K5 - 32*K2**4*K4**2 + 128*K2**4*K4 - 488*K2**4 + 96*K2**2*K3**2*K4 - 256*K2**2*K3**2 + 32*K2**2*K4**3 - 504*K2**2*K4**2 + 2080*K2**2*K4 - 3554*K2**2 - 96*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 616*K2*K3*K5 + 352*K2*K4*K6 - 160*K3**2*K4**2 + 8*K3**2*K6 - 2024*K3**2 + 64*K3*K4*K7 - 8*K4**4 - 1670*K4**2 - 360*K5**2 - 54*K6**2 + 3716 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |