Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.345

Min(phi) over symmetries of the knot is: [-4,-2,-1,2,2,3,1,0,2,3,5,0,1,2,4,0,0,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.345']
Arrow polynomial of the knot is: -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.58', '6.76', '6.78', '6.90', '6.98', '6.154', '6.161', '6.162', '6.198', '6.280', '6.284', '6.345', '6.417', '6.421', '6.435', '6.511']
Outer characteristic polynomial of the knot is: t^7+99t^5+132t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.345']
2-strand cable arrow polynomial of the knot is: -144*K1**4 + 384*K1**3*K2*K3 - 160*K1**3*K3 + 192*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 3584*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 384*K1**2*K2*K4 + 3232*K1**2*K2 - 272*K1**2*K3**2 - 2584*K1**2 + 1056*K1*K2**3*K3 + 384*K1*K2**2*K3*K4 - 672*K1*K2**2*K3 - 288*K1*K2**2*K5 - 256*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4560*K1*K2*K3 + 544*K1*K3*K4 + 48*K1*K4*K5 + 8*K1*K5*K6 - 128*K2**6 + 448*K2**4*K4 - 2688*K2**4 + 256*K2**3*K3*K5 - 1344*K2**2*K3**2 - 32*K2**2*K3*K7 - 616*K2**2*K4**2 + 2488*K2**2*K4 - 240*K2**2*K5**2 - 8*K2**2*K6**2 - 1618*K2**2 + 1136*K2*K3*K5 + 168*K2*K4*K6 + 80*K2*K5*K7 + 8*K2*K6*K8 + 8*K3**2*K6 - 1508*K3**2 - 658*K4**2 - 288*K5**2 - 14*K6**2 - 4*K7**2 - 2*K8**2 + 2618
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.345']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11424', 'vk6.11719', 'vk6.12736', 'vk6.13081', 'vk6.20610', 'vk6.22027', 'vk6.28081', 'vk6.29531', 'vk6.31169', 'vk6.31510', 'vk6.32333', 'vk6.32755', 'vk6.39490', 'vk6.41700', 'vk6.46084', 'vk6.47742', 'vk6.52180', 'vk6.52430', 'vk6.53006', 'vk6.53324', 'vk6.57486', 'vk6.58655', 'vk6.62164', 'vk6.63119', 'vk6.63749', 'vk6.63857', 'vk6.64173', 'vk6.64363', 'vk6.67010', 'vk6.67880', 'vk6.69631', 'vk6.70318']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U3U2O6U1U6U4U5
R3 orbit {'O1O2O3O4O5U3U2O6U1U6U4U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U1U2U6U5O6U4U3
Gauss code of K* O1O2O3O4U1U5U6U3U4O6O5U2
Gauss code of -K* O1O2O3O4U3O5O6U1U2U6U5U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 -2 2 4 1],[ 3 0 0 0 4 5 1],[ 2 0 0 0 2 3 0],[ 2 0 0 0 1 2 0],[-2 -4 -2 -1 0 1 0],[-4 -5 -3 -2 -1 0 0],[-1 -1 0 0 0 0 0]]
Primitive based matrix [[ 0 4 2 1 -2 -2 -3],[-4 0 -1 0 -2 -3 -5],[-2 1 0 0 -1 -2 -4],[-1 0 0 0 0 0 -1],[ 2 2 1 0 0 0 0],[ 2 3 2 0 0 0 0],[ 3 5 4 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,-2,-1,2,2,3,1,0,2,3,5,0,1,2,4,0,0,1,0,0,0]
Phi over symmetry [-4,-2,-1,2,2,3,1,0,2,3,5,0,1,2,4,0,0,1,0,0,0]
Phi of -K [-3,-2,-2,1,2,4,1,1,3,1,2,0,3,2,3,3,3,4,1,3,1]
Phi of K* [-4,-2,-1,2,2,3,1,3,3,4,2,1,2,3,1,3,3,3,0,1,1]
Phi of -K* [-3,-2,-2,1,2,4,0,0,1,4,5,0,0,1,2,0,2,3,0,0,1]
Symmetry type of based matrix c
u-polynomial -t^4+t^3+t^2-t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial -4w^4z^2+9w^3z^2-8w^3z+26w^2z+17w
Inner characteristic polynomial t^6+61t^4+33t^2+1
Outer characteristic polynomial t^7+99t^5+132t^3+16t
Flat arrow polynomial -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
2-strand cable arrow polynomial -144*K1**4 + 384*K1**3*K2*K3 - 160*K1**3*K3 + 192*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 3584*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 384*K1**2*K2*K4 + 3232*K1**2*K2 - 272*K1**2*K3**2 - 2584*K1**2 + 1056*K1*K2**3*K3 + 384*K1*K2**2*K3*K4 - 672*K1*K2**2*K3 - 288*K1*K2**2*K5 - 256*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4560*K1*K2*K3 + 544*K1*K3*K4 + 48*K1*K4*K5 + 8*K1*K5*K6 - 128*K2**6 + 448*K2**4*K4 - 2688*K2**4 + 256*K2**3*K3*K5 - 1344*K2**2*K3**2 - 32*K2**2*K3*K7 - 616*K2**2*K4**2 + 2488*K2**2*K4 - 240*K2**2*K5**2 - 8*K2**2*K6**2 - 1618*K2**2 + 1136*K2*K3*K5 + 168*K2*K4*K6 + 80*K2*K5*K7 + 8*K2*K6*K8 + 8*K3**2*K6 - 1508*K3**2 - 658*K4**2 - 288*K5**2 - 14*K6**2 - 4*K7**2 - 2*K8**2 + 2618
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}]]
If K is slice False
Contact