Gauss code |
O1O2O3O4O5U3U2O6U4U1U6U5 |
R3 orbit |
{'O1O2O3O4O5U3U2O6U4U1U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U6U5U2O6U4U3 |
Gauss code of K* |
O1O2O3O4U2U5U6U1U4O6O5U3 |
Gauss code of -K* |
O1O2O3O4U2O5O6U1U4U6U5U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 -2 0 4 2],[ 2 0 -1 -1 2 5 2],[ 2 1 0 0 2 3 1],[ 2 1 0 0 1 2 1],[ 0 -2 -2 -1 0 2 1],[-4 -5 -3 -2 -2 0 0],[-2 -2 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 4 2 0 -2 -2 -2],[-4 0 0 -2 -2 -3 -5],[-2 0 0 -1 -1 -1 -2],[ 0 2 1 0 -1 -2 -2],[ 2 2 1 1 0 0 1],[ 2 3 1 2 0 0 1],[ 2 5 2 2 -1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,0,2,2,2,0,2,2,3,5,1,1,1,2,1,2,2,0,-1,-1] |
Phi over symmetry |
[-4,-2,0,2,2,2,0,2,2,3,5,1,1,1,2,1,2,2,0,-1,-1] |
Phi of -K |
[-2,-2,-2,0,2,4,-1,0,0,3,3,1,0,2,1,1,3,4,1,2,2] |
Phi of K* |
[-4,-2,0,2,2,2,2,2,1,3,4,1,2,3,3,0,0,1,-1,-1,0] |
Phi of -K* |
[-2,-2,-2,0,2,4,-1,-1,2,2,5,0,1,1,2,2,1,3,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+2t^2 |
Normalized Jones-Krushkal polynomial |
7z^2+20z+13 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+9w^3z^2+20w^2z+13 |
Inner characteristic polynomial |
t^6+60t^4+16t^2 |
Outer characteristic polynomial |
t^7+92t^5+80t^3 |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1**2 - 2*K2**2 + 3 |
2-strand cable arrow polynomial |
-32*K2**4*K4**2 + 160*K2**4*K4 - 1728*K2**4 + 32*K2**2*K4**3 - 368*K2**2*K4**2 + 2248*K2**2*K4 - 532*K2**2 + 296*K2*K4*K6 - 8*K4**4 - 728*K4**2 - 76*K6**2 + 734 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {2, 5}, {1, 4}, {3}]] |
If K is slice |
False |