Gauss code |
O1O2O3O4O5O6U1U4U5U3U6U2 |
R3 orbit |
{'O1O2O3O4O5O6U1U4U5U3U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U1U4U2U3U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U6U4U2U3U5 |
Gauss code of -K* |
O1O2O3O4O5O6U2U4U5U3U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 1 0 -1 1 4],[ 5 0 5 3 1 2 4],[-1 -5 0 -1 -2 0 3],[ 0 -3 1 0 -1 1 3],[ 1 -1 2 1 0 1 2],[-1 -2 0 -1 -1 0 1],[-4 -4 -3 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 4 1 1 0 -1 -5],[-4 0 -1 -3 -3 -2 -4],[-1 1 0 0 -1 -1 -2],[-1 3 0 0 -1 -2 -5],[ 0 3 1 1 0 -1 -3],[ 1 2 1 2 1 0 -1],[ 5 4 2 5 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,-1,0,1,5,1,3,3,2,4,0,1,1,2,1,2,5,1,3,1] |
Phi over symmetry |
[-5,-1,0,1,1,4,1,3,2,5,4,1,1,2,2,1,1,3,0,1,3] |
Phi of -K |
[-5,-1,0,1,1,4,3,2,1,4,5,0,0,1,3,0,0,1,0,0,2] |
Phi of K* |
[-4,-1,-1,0,1,5,0,2,1,3,5,0,0,0,1,0,1,4,0,2,3] |
Phi of -K* |
[-5,-1,0,1,1,4,1,3,2,5,4,1,1,2,2,1,1,3,0,1,3] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-t^4-t |
Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
Inner characteristic polynomial |
t^6+86t^4+26t^2+1 |
Outer characteristic polynomial |
t^7+130t^5+100t^3+11t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 + 4*K1**2*K3 - 10*K1**2 - 10*K1*K2 - 2*K1*K3 - 2*K1*K4 - 2*K1 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial |
-128*K1**6 - 384*K1**4*K2**2 + 1728*K1**4*K2 - 2992*K1**4 - 640*K1**3*K2**2*K3 + 1344*K1**3*K2*K3 - 576*K1**3*K3 - 256*K1**2*K2**4 + 256*K1**2*K2**3*K3**2 + 2944*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 + 320*K1**2*K2**2*K4 - 10672*K1**2*K2**2 + 320*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 1088*K1**2*K2*K4 + 10352*K1**2*K2 - 496*K1**2*K3**2 - 128*K1**2*K4**2 - 5960*K1**2 - 256*K1*K2**4*K3 - 256*K1*K2**3*K3*K4 + 3136*K1*K2**3*K3 + 864*K1*K2**2*K3*K4 - 2880*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 + 32*K1*K2**2*K5*K6 - 704*K1*K2**2*K5 + 64*K1*K2*K3**3 - 576*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 9624*K1*K2*K3 - 64*K1*K2*K4*K5 + 1528*K1*K3*K4 + 272*K1*K4*K5 + 32*K1*K5*K6 - 64*K2**6 - 448*K2**4*K3**2 - 32*K2**4*K4**2 + 672*K2**4*K4 - 32*K2**4*K6**2 - 3944*K2**4 + 640*K2**3*K3*K5 + 160*K2**3*K4*K6 + 32*K2**3*K5*K7 + 32*K2**3*K6*K8 - 160*K2**3*K6 + 64*K2**2*K3**2*K6 - 2560*K2**2*K3**2 + 32*K2**2*K3*K4*K7 - 96*K2**2*K3*K7 - 904*K2**2*K4**2 - 32*K2**2*K4*K8 + 3608*K2**2*K4 - 304*K2**2*K5**2 - 136*K2**2*K6**2 - 32*K2**2*K7**2 - 8*K2**2*K8**2 - 3952*K2**2 - 128*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 1568*K2*K3*K5 + 432*K2*K4*K6 + 112*K2*K5*K7 + 32*K2*K6*K8 + 40*K3**2*K6 - 2672*K3**2 + 16*K3*K4*K7 - 1120*K4**2 - 368*K5**2 - 80*K6**2 - 16*K7**2 - 4*K8**2 + 5530 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |