Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.351

Min(phi) over symmetries of the knot is: [-3,-2,-1,2,2,2,-1,1,2,3,3,1,1,1,2,1,1,2,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.351']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+81t^5+54t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.351']
2-strand cable arrow polynomial of the knot is: 256*K1**4*K2 - 2320*K1**4 + 768*K1**3*K2*K3 + 96*K1**3*K3*K4 - 608*K1**3*K3 - 2336*K1**2*K2**2 - 1824*K1**2*K2*K4 + 5776*K1**2*K2 - 912*K1**2*K3**2 - 656*K1**2*K4**2 - 4392*K1**2 + 64*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 544*K1*K2**2*K3 - 160*K1*K2*K3*K4 + 5560*K1*K2*K3 - 96*K1*K2*K4*K5 + 3096*K1*K3*K4 + 512*K1*K4*K5 - 64*K2**4 - 288*K2**2*K3**2 - 392*K2**2*K4**2 + 1448*K2**2*K4 - 3758*K2**2 - 96*K2*K3**2*K4 + 184*K2*K3*K5 + 264*K2*K4*K6 - 2236*K3**2 - 1416*K4**2 - 100*K5**2 - 18*K6**2 + 3934
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.351']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71638', 'vk6.71815', 'vk6.72235', 'vk6.72365', 'vk6.73398', 'vk6.73592', 'vk6.73869', 'vk6.74288', 'vk6.74914', 'vk6.75361', 'vk6.75674', 'vk6.75876', 'vk6.76464', 'vk6.77258', 'vk6.77354', 'vk6.77602', 'vk6.77696', 'vk6.78323', 'vk6.78868', 'vk6.79327', 'vk6.80111', 'vk6.80295', 'vk6.80422', 'vk6.80788', 'vk6.82027', 'vk6.82761', 'vk6.85363', 'vk6.86693', 'vk6.86941', 'vk6.87046', 'vk6.87607', 'vk6.89461']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U3U2O6U5U1U4U6
R3 orbit {'O1O2O3O4O5U3U2O6U5U1U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U2U5U1O6U4U3
Gauss code of K* O1O2O3O4U2U5U6U3U1O6O5U4
Gauss code of -K* O1O2O3O4U1O5O6U4U2U6U5U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 -2 2 1 3],[ 2 0 -1 -1 3 2 3],[ 2 1 0 0 3 2 2],[ 2 1 0 0 2 1 2],[-2 -3 -3 -2 0 0 2],[-1 -2 -2 -1 0 0 1],[-3 -3 -2 -2 -2 -1 0]]
Primitive based matrix [[ 0 3 2 1 -2 -2 -2],[-3 0 -2 -1 -2 -2 -3],[-2 2 0 0 -2 -3 -3],[-1 1 0 0 -1 -2 -2],[ 2 2 2 1 0 0 1],[ 2 2 3 2 0 0 1],[ 2 3 3 2 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,2,2,2,2,1,2,2,3,0,2,3,3,1,2,2,0,-1,-1]
Phi over symmetry [-3,-2,-1,2,2,2,-1,1,2,3,3,1,1,1,2,1,1,2,-1,-1,0]
Phi of -K [-2,-2,-2,1,2,3,-1,0,1,1,3,1,1,1,2,2,2,3,1,1,-1]
Phi of K* [-3,-2,-1,2,2,2,-1,1,2,3,3,1,1,1,2,1,1,2,-1,-1,0]
Phi of -K* [-2,-2,-2,1,2,3,-1,-1,2,3,3,0,1,2,2,2,3,2,0,1,2]
Symmetry type of based matrix c
u-polynomial -t^3+2t^2-t
Normalized Jones-Krushkal polynomial 6z^2+26z+29
Enhanced Jones-Krushkal polynomial 6w^3z^2+26w^2z+29w
Inner characteristic polynomial t^6+55t^4+24t^2
Outer characteristic polynomial t^7+81t^5+54t^3+6t
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial 256*K1**4*K2 - 2320*K1**4 + 768*K1**3*K2*K3 + 96*K1**3*K3*K4 - 608*K1**3*K3 - 2336*K1**2*K2**2 - 1824*K1**2*K2*K4 + 5776*K1**2*K2 - 912*K1**2*K3**2 - 656*K1**2*K4**2 - 4392*K1**2 + 64*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 544*K1*K2**2*K3 - 160*K1*K2*K3*K4 + 5560*K1*K2*K3 - 96*K1*K2*K4*K5 + 3096*K1*K3*K4 + 512*K1*K4*K5 - 64*K2**4 - 288*K2**2*K3**2 - 392*K2**2*K4**2 + 1448*K2**2*K4 - 3758*K2**2 - 96*K2*K3**2*K4 + 184*K2*K3*K5 + 264*K2*K4*K6 - 2236*K3**2 - 1416*K4**2 - 100*K5**2 - 18*K6**2 + 3934
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {5}, {1, 4}, {2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact