Gauss code |
O1O2O3O4O5U3U4O6U1U6U2U5 |
R3 orbit |
{'O1O2O3O4O5U3U4O6U1U6U2U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U4U6U5O6U2U3 |
Gauss code of K* |
O1O2O3O4U1U3U5U6U4O5O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5O6U1U5U6U2U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 -2 0 4 1],[ 3 0 2 -1 1 5 1],[ 0 -2 0 -1 1 3 0],[ 2 1 1 0 1 2 0],[ 0 -1 -1 -1 0 1 0],[-4 -5 -3 -2 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 4 1 0 0 -2 -3],[-4 0 0 -1 -3 -2 -5],[-1 0 0 0 0 0 -1],[ 0 1 0 0 -1 -1 -1],[ 0 3 0 1 0 -1 -2],[ 2 2 0 1 1 0 1],[ 3 5 1 1 2 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,0,0,2,3,0,1,3,2,5,0,0,0,1,1,1,1,1,2,-1] |
Phi over symmetry |
[-4,-1,0,0,2,3,0,1,3,2,5,0,0,0,1,1,1,1,1,2,-1] |
Phi of -K |
[-3,-2,0,0,1,4,2,1,2,3,2,1,1,3,4,-1,1,1,1,3,3] |
Phi of K* |
[-4,-1,0,0,2,3,3,1,3,4,2,1,1,3,3,1,1,1,1,2,2] |
Phi of -K* |
[-3,-2,0,0,1,4,-1,1,2,1,5,1,1,0,2,-1,0,1,0,3,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+t^3+t^2-t |
Normalized Jones-Krushkal polynomial |
7z+15 |
Enhanced Jones-Krushkal polynomial |
-8w^3z+15w^2z+15w |
Inner characteristic polynomial |
t^6+49t^4+45t^2 |
Outer characteristic polynomial |
t^7+79t^5+110t^3 |
Flat arrow polynomial |
12*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 6*K1 + 3*K2 + 4 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 224*K1**4*K2 - 640*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 - 512*K1**2*K2**4 + 576*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 2576*K1**2*K2**2 + 2376*K1**2*K2 - 128*K1**2*K3**2 - 64*K1**2*K4**2 - 1584*K1**2 + 992*K1*K2**3*K3 + 32*K1*K2*K3**3 + 2320*K1*K2*K3 + 280*K1*K3*K4 + 64*K1*K4*K5 - 224*K2**6 - 192*K2**4*K3**2 - 32*K2**4*K4**2 + 224*K2**4*K4 - 1392*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 896*K2**2*K3**2 - 136*K2**2*K4**2 + 816*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 552*K2**2 + 344*K2*K3*K5 + 56*K2*K4*K6 - 32*K3**2*K4**2 - 696*K3**2 + 16*K3*K4*K7 - 290*K4**2 - 48*K5**2 - 8*K6**2 + 1512 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |