Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.356

Min(phi) over symmetries of the knot is: [-3,-2,0,1,1,3,-1,1,1,3,4,1,0,2,2,0,0,1,0,0,2]
Flat knots (up to 7 crossings) with same phi are :['6.356']
Arrow polynomial of the knot is: 8*K1**3 - 2*K1**2 - 8*K1*K2 - 2*K1 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.356', '6.596']
Outer characteristic polynomial of the knot is: t^7+66t^5+46t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.356']
2-strand cable arrow polynomial of the knot is: -448*K1**2*K2**4 + 352*K1**2*K2**3 - 1984*K1**2*K2**2 + 1096*K1**2*K2 - 16*K1**2*K3**2 - 972*K1**2 + 672*K1*K2**3*K3 + 2008*K1*K2*K3 + 224*K1*K3*K4 + 56*K1*K4*K5 - 192*K2**6 + 288*K2**4*K4 - 920*K2**4 - 368*K2**2*K3**2 - 160*K2**2*K4**2 + 664*K2**2*K4 - 432*K2**2 + 96*K2*K3*K5 + 56*K2*K4*K6 - 16*K3**4 + 32*K3**2*K6 - 692*K3**2 - 330*K4**2 - 40*K5**2 - 24*K6**2 + 1048
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.356']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10511', 'vk6.10518', 'vk6.10582', 'vk6.10597', 'vk6.10769', 'vk6.10786', 'vk6.10886', 'vk6.10895', 'vk6.17679', 'vk6.17691', 'vk6.17726', 'vk6.17738', 'vk6.24285', 'vk6.24297', 'vk6.24760', 'vk6.25217', 'vk6.30192', 'vk6.30199', 'vk6.30261', 'vk6.30276', 'vk6.30388', 'vk6.30405', 'vk6.30655', 'vk6.30748', 'vk6.36527', 'vk6.36938', 'vk6.43617', 'vk6.43633', 'vk6.43719', 'vk6.43737', 'vk6.52735', 'vk6.52845', 'vk6.60351', 'vk6.60361', 'vk6.60631', 'vk6.60966', 'vk6.63448', 'vk6.63455', 'vk6.65424', 'vk6.65758']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U3U4O6U1U6U5U2
R3 orbit {'O1O2O3O4U2O5U4O6U1U6U3U5', 'O1O2O3O4O5U3U4O6U1U6U5U2'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U4U1U6U5O6U2U3
Gauss code of K* O1O2O3O4U1U4U5U6U3O5O6U2
Gauss code of -K* O1O2O3O4U3O5O6U2U5U6U1U4
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 1 -2 0 3 1],[ 3 0 3 -1 1 4 1],[-1 -3 0 -2 0 2 0],[ 2 1 2 0 1 2 0],[ 0 -1 0 -1 0 1 0],[-3 -4 -2 -2 -1 0 0],[-1 -1 0 0 0 0 0]]
Primitive based matrix [[ 0 3 1 1 0 -2 -3],[-3 0 0 -2 -1 -2 -4],[-1 0 0 0 0 0 -1],[-1 2 0 0 0 -2 -3],[ 0 1 0 0 0 -1 -1],[ 2 2 0 2 1 0 1],[ 3 4 1 3 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,0,2,3,0,2,1,2,4,0,0,0,1,0,2,3,1,1,-1]
Phi over symmetry [-3,-2,0,1,1,3,-1,1,1,3,4,1,0,2,2,0,0,1,0,0,2]
Phi of -K [-3,-2,0,1,1,3,2,2,1,3,2,1,1,3,3,1,1,2,0,0,2]
Phi of K* [-3,-1,-1,0,2,3,0,2,2,3,2,0,1,1,1,1,3,3,1,2,2]
Phi of -K* [-3,-2,0,1,1,3,-1,1,1,3,4,1,0,2,2,0,0,1,0,0,2]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z+7
Enhanced Jones-Krushkal polynomial -10w^3z+13w^2z+7w
Inner characteristic polynomial t^6+42t^4+17t^2
Outer characteristic polynomial t^7+66t^5+46t^3
Flat arrow polynomial 8*K1**3 - 2*K1**2 - 8*K1*K2 - 2*K1 + K2 + 2*K3 + 2
2-strand cable arrow polynomial -448*K1**2*K2**4 + 352*K1**2*K2**3 - 1984*K1**2*K2**2 + 1096*K1**2*K2 - 16*K1**2*K3**2 - 972*K1**2 + 672*K1*K2**3*K3 + 2008*K1*K2*K3 + 224*K1*K3*K4 + 56*K1*K4*K5 - 192*K2**6 + 288*K2**4*K4 - 920*K2**4 - 368*K2**2*K3**2 - 160*K2**2*K4**2 + 664*K2**2*K4 - 432*K2**2 + 96*K2*K3*K5 + 56*K2*K4*K6 - 16*K3**4 + 32*K3**2*K6 - 692*K3**2 - 330*K4**2 - 40*K5**2 - 24*K6**2 + 1048
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact