Gauss code |
O1O2O3O4O5O6U1U4U5U6U2U3 |
R3 orbit |
{'O1O2O3O4O5O6U1U4U5U6U2U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U4U5U1U2U3U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U5U6U2U3U4 |
Gauss code of -K* |
O1O2O3O4O5O6U3U4U5U1U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 0 2 -1 1 3],[ 5 0 4 5 1 2 3],[ 0 -4 0 1 -2 0 2],[-2 -5 -1 0 -2 0 2],[ 1 -1 2 2 0 1 2],[-1 -2 0 0 -1 0 1],[-3 -3 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 2 1 0 -1 -5],[-3 0 -2 -1 -2 -2 -3],[-2 2 0 0 -1 -2 -5],[-1 1 0 0 0 -1 -2],[ 0 2 1 0 0 -2 -4],[ 1 2 2 1 2 0 -1],[ 5 3 5 2 4 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,0,1,5,2,1,2,2,3,0,1,2,5,0,1,2,2,4,1] |
Phi over symmetry |
[-5,-1,0,1,2,3,1,4,2,5,3,2,1,2,2,0,1,2,0,1,2] |
Phi of -K |
[-5,-1,0,1,2,3,3,1,4,2,5,-1,1,1,2,1,1,1,1,1,-1] |
Phi of K* |
[-3,-2,-1,0,1,5,-1,1,1,2,5,1,1,1,2,1,1,4,-1,1,3] |
Phi of -K* |
[-5,-1,0,1,2,3,1,4,2,5,3,2,1,2,2,0,1,2,0,1,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-t^3-t^2 |
Normalized Jones-Krushkal polynomial |
3z+7 |
Enhanced Jones-Krushkal polynomial |
-8w^5z+16w^4z-8w^3z+8w^3+3w^2z-w |
Inner characteristic polynomial |
t^6+78t^4+26t^2 |
Outer characteristic polynomial |
t^7+118t^5+161t^3 |
Flat arrow polynomial |
16*K1**5 - 8*K1**3*K2 - 8*K1**3 - 2*K1**2 + K2 + 2 |
2-strand cable arrow polynomial |
-32*K1**4 + 192*K1**2*K2**3 - 928*K1**2*K2**2 + 872*K1**2*K2 - 820*K1**2 + 224*K1*K2**3*K3 + 936*K1*K2*K3 + 32*K1*K3*K4 + 16*K1*K4*K5 - 512*K2**10 + 512*K2**8*K4 - 768*K2**8 - 128*K2**6*K4**2 + 640*K2**6*K4 - 1728*K2**6 - 192*K2**4*K4**2 + 1216*K2**4*K4 - 72*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 - 304*K2**2*K3**2 - 112*K2**2*K4**2 + 528*K2**2*K4 - 32*K2**2*K5**2 + 8*K2**2 + 152*K2*K3*K5 + 8*K2*K4*K6 + 8*K2*K5*K7 - 312*K3**2 - 90*K4**2 - 36*K5**2 + 656 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}]] |
If K is slice |
False |