Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,-1,1,2,3,2,1,2,2,1,0,-1,0,0,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.364'] |
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 4*K1*K3 + 4*K2 + 2*K3 + K4 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.364', '6.895', '6.907'] |
Outer characteristic polynomial of the knot is: t^7+52t^5+51t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.364'] |
2-strand cable arrow polynomial of the knot is: 256*K1**4*K2**3 - 640*K1**4*K2**2 + 1152*K1**4*K2 - 2080*K1**4 - 512*K1**3*K2**2*K3 + 992*K1**3*K2*K3 + 64*K1**3*K3*K4 - 896*K1**3*K3 - 384*K1**2*K2**4 + 2048*K1**2*K2**3 - 5568*K1**2*K2**2 + 352*K1**2*K2*K3**2 - 1024*K1**2*K2*K4 + 7064*K1**2*K2 - 864*K1**2*K3**2 - 128*K1**2*K3*K5 - 64*K1**2*K4**2 - 5360*K1**2 + 1216*K1*K2**3*K3 - 1120*K1*K2**2*K3 - 64*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 6552*K1*K2*K3 - 32*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 1864*K1*K3*K4 + 224*K1*K4*K5 + 88*K1*K5*K6 + 56*K1*K6*K7 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1392*K2**4 + 128*K2**3*K3*K5 + 64*K2**3*K4*K6 - 1008*K2**2*K3**2 - 248*K2**2*K4**2 + 1312*K2**2*K4 - 112*K2**2*K5**2 - 48*K2**2*K6**2 - 3468*K2**2 + 856*K2*K3*K5 + 272*K2*K4*K6 + 72*K2*K5*K7 + 16*K2*K6*K8 + 48*K3**2*K6 - 2396*K3**2 + 48*K3*K4*K7 - 1008*K4**2 - 348*K5**2 - 172*K6**2 - 64*K7**2 - 2*K8**2 + 4576 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.364'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4421', 'vk6.4518', 'vk6.5803', 'vk6.5932', 'vk6.7866', 'vk6.7973', 'vk6.9282', 'vk6.9403', 'vk6.10159', 'vk6.10230', 'vk6.10373', 'vk6.17899', 'vk6.17962', 'vk6.18290', 'vk6.18625', 'vk6.24402', 'vk6.25176', 'vk6.30042', 'vk6.30103', 'vk6.36900', 'vk6.37358', 'vk6.43829', 'vk6.44117', 'vk6.44440', 'vk6.48614', 'vk6.50513', 'vk6.50594', 'vk6.51115', 'vk6.51668', 'vk6.55847', 'vk6.56088', 'vk6.65509'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U3U5O6U1U4U6U2 |
R3 orbit | {'O1O2O3O4O5U3U5O6U1U4U6U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U4U6U2U5O6U1U3 |
Gauss code of K* | O1O2O3O4U1U4U5U2U6O5O6U3 |
Gauss code of -K* | O1O2O3O4U2O5O6U5U3U6U1U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 1 -2 1 1 2],[ 3 0 3 -1 2 1 2],[-1 -3 0 -2 0 1 1],[ 2 1 2 0 2 1 1],[-1 -2 0 -2 0 0 1],[-1 -1 -1 -1 0 0 0],[-2 -2 -1 -1 -1 0 0]] |
Primitive based matrix | [[ 0 2 1 1 1 -2 -3],[-2 0 0 -1 -1 -1 -2],[-1 0 0 0 -1 -1 -1],[-1 1 0 0 0 -2 -2],[-1 1 1 0 0 -2 -3],[ 2 1 1 2 2 0 1],[ 3 2 1 2 3 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,-1,2,3,0,1,1,1,2,0,1,1,1,0,2,2,2,3,-1] |
Phi over symmetry | [-3,-2,1,1,1,2,-1,1,2,3,2,1,2,2,1,0,-1,0,0,1,1] |
Phi of -K | [-3,-2,1,1,1,2,2,1,2,3,3,1,1,2,3,0,-1,0,0,0,1] |
Phi of K* | [-2,-1,-1,-1,2,3,0,0,1,3,3,0,0,1,2,1,1,1,2,3,2] |
Phi of -K* | [-3,-2,1,1,1,2,-1,1,2,3,2,1,2,2,1,0,-1,0,0,1,1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-3t |
Normalized Jones-Krushkal polynomial | z^2+18z+33 |
Enhanced Jones-Krushkal polynomial | w^3z^2-4w^3z+22w^2z+33w |
Inner characteristic polynomial | t^6+32t^4+23t^2 |
Outer characteristic polynomial | t^7+52t^5+51t^3+8t |
Flat arrow polynomial | 4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 4*K1*K3 + 4*K2 + 2*K3 + K4 + 4 |
2-strand cable arrow polynomial | 256*K1**4*K2**3 - 640*K1**4*K2**2 + 1152*K1**4*K2 - 2080*K1**4 - 512*K1**3*K2**2*K3 + 992*K1**3*K2*K3 + 64*K1**3*K3*K4 - 896*K1**3*K3 - 384*K1**2*K2**4 + 2048*K1**2*K2**3 - 5568*K1**2*K2**2 + 352*K1**2*K2*K3**2 - 1024*K1**2*K2*K4 + 7064*K1**2*K2 - 864*K1**2*K3**2 - 128*K1**2*K3*K5 - 64*K1**2*K4**2 - 5360*K1**2 + 1216*K1*K2**3*K3 - 1120*K1*K2**2*K3 - 64*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 6552*K1*K2*K3 - 32*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 1864*K1*K3*K4 + 224*K1*K4*K5 + 88*K1*K5*K6 + 56*K1*K6*K7 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1392*K2**4 + 128*K2**3*K3*K5 + 64*K2**3*K4*K6 - 1008*K2**2*K3**2 - 248*K2**2*K4**2 + 1312*K2**2*K4 - 112*K2**2*K5**2 - 48*K2**2*K6**2 - 3468*K2**2 + 856*K2*K3*K5 + 272*K2*K4*K6 + 72*K2*K5*K7 + 16*K2*K6*K8 + 48*K3**2*K6 - 2396*K3**2 + 48*K3*K4*K7 - 1008*K4**2 - 348*K5**2 - 172*K6**2 - 64*K7**2 - 2*K8**2 + 4576 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |