Gauss code |
O1O2O3O4O5U3U5O6U1U6U4U2 |
R3 orbit |
{'O1O2O3O4O5U3U5O6U1U6U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U2U6U5O6U1U3 |
Gauss code of K* |
O1O2O3O4U1U4U5U3U6O5O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5O6U5U2U6U1U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 -2 2 1 1],[ 3 0 3 -1 3 1 1],[-1 -3 0 -2 1 1 0],[ 2 1 2 0 2 1 0],[-2 -3 -1 -2 0 0 0],[-1 -1 -1 -1 0 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 1 -2 -3],[-2 0 0 0 -1 -2 -3],[-1 0 0 0 0 0 -1],[-1 0 0 0 -1 -1 -1],[-1 1 0 1 0 -2 -3],[ 2 2 0 1 2 0 1],[ 3 3 1 1 3 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,-1,2,3,0,0,1,2,3,0,0,0,1,1,1,1,2,3,-1] |
Phi over symmetry |
[-3,-2,1,1,1,2,-1,1,1,3,3,0,1,2,2,0,0,0,-1,0,1] |
Phi of -K |
[-3,-2,1,1,1,2,2,1,3,3,2,1,2,3,2,-1,0,0,0,1,1] |
Phi of K* |
[-2,-1,-1,-1,2,3,0,1,1,2,2,0,1,1,1,0,3,3,2,3,2] |
Phi of -K* |
[-3,-2,1,1,1,2,-1,1,1,3,3,0,1,2,2,0,0,0,-1,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-3t |
Normalized Jones-Krushkal polynomial |
6z^2+26z+29 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+26w^2z+29w |
Inner characteristic polynomial |
t^6+32t^4+22t^2+1 |
Outer characteristic polynomial |
t^7+52t^5+52t^3+7t |
Flat arrow polynomial |
4*K1**3 - 2*K1**2 - 6*K1*K2 - 2*K1*K3 - 2*K2**2 + 2*K2 + 2*K3 + 2*K4 + 3 |
2-strand cable arrow polynomial |
1248*K1**4*K2 - 3280*K1**4 + 1152*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1664*K1**3*K3 - 128*K1**2*K2**4 + 416*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 4640*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 896*K1**2*K2*K4 + 8472*K1**2*K2 - 1744*K1**2*K3**2 - 96*K1**2*K3*K5 - 224*K1**2*K4**2 - 96*K1**2*K4*K6 - 5572*K1**2 + 320*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 160*K1*K2**2*K5 + 32*K1*K2*K3**3 - 960*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8312*K1*K2*K3 - 64*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 2984*K1*K3*K4 + 776*K1*K4*K5 + 168*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**6 + 64*K2**4*K4 - 744*K2**4 - 32*K2**3*K6 - 672*K2**2*K3**2 - 32*K2**2*K3*K7 - 88*K2**2*K4**2 + 1928*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 4816*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1000*K2*K3*K5 - 32*K2*K4**2*K6 + 296*K2*K4*K6 + 80*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 - 16*K3**2*K4**2 + 112*K3**2*K6 - 3056*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 16*K4**2*K8 - 1528*K4**2 - 456*K5**2 - 184*K6**2 - 36*K7**2 - 4*K8**2 + 5154 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {5}, {3, 4}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |