Gauss code |
O1O2O3O4O5O6U1U4U5U6U3U2 |
R3 orbit |
{'O1O2O3O4O5O6U1U4U5U6U3U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U4U1U2U3U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U6U5U2U3U4 |
Gauss code of -K* |
O1O2O3O4O5O6U3U4U5U2U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 1 1 -1 1 3],[ 5 0 5 4 1 2 3],[-1 -5 0 0 -2 0 2],[-1 -4 0 0 -2 0 2],[ 1 -1 2 2 0 1 2],[-1 -2 0 0 -1 0 1],[-3 -3 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 1 -1 -5],[-3 0 -1 -2 -2 -2 -3],[-1 1 0 0 0 -1 -2],[-1 2 0 0 0 -2 -4],[-1 2 0 0 0 -2 -5],[ 1 2 1 2 2 0 -1],[ 5 3 2 4 5 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,-1,1,5,1,2,2,2,3,0,0,1,2,0,2,4,2,5,1] |
Phi over symmetry |
[-5,-1,1,1,1,3,1,2,4,5,3,1,2,2,2,0,0,1,0,2,2] |
Phi of -K |
[-5,-1,1,1,1,3,3,1,2,4,5,0,0,1,2,0,0,0,0,0,1] |
Phi of K* |
[-3,-1,-1,-1,1,5,0,0,1,2,5,0,0,0,1,0,0,2,1,4,3] |
Phi of -K* |
[-5,-1,1,1,1,3,1,2,4,5,3,1,2,2,2,0,0,1,0,2,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-t^3-2t |
Normalized Jones-Krushkal polynomial |
2z^2+7z+7 |
Enhanced Jones-Krushkal polynomial |
-6w^4z^2+8w^3z^2-10w^3z+17w^2z+7w |
Inner characteristic polynomial |
t^6+77t^4+14t^2 |
Outer characteristic polynomial |
t^7+115t^5+110t^3+6t |
Flat arrow polynomial |
-8*K1**3*K2 + 4*K1**3 + 4*K1**2*K3 + 1 |
2-strand cable arrow polynomial |
-2048*K1**2*K2**4 - 512*K1**2*K2**3*K4 + 2528*K1**2*K2**3 - 3200*K1**2*K2**2 - 128*K1**2*K2*K4 + 2024*K1**2*K2 - 1872*K1**2 + 896*K1*K2**5*K3 + 640*K1*K2**4*K3*K4 - 1152*K1*K2**4*K3 - 128*K1*K2**4*K5 - 128*K1*K2**3*K3*K4 + 3040*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 576*K1*K2**2*K3 - 64*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2432*K1*K2*K3 + 368*K1*K3*K4 + 24*K1*K4*K5 + 8*K1*K5*K6 - 128*K2**6*K4**2 + 384*K2**6*K4 - 992*K2**6 + 128*K2**5*K4*K6 - 128*K2**5*K6 - 1152*K2**4*K3**2 - 832*K2**4*K4**2 + 1792*K2**4*K4 - 32*K2**4*K6**2 - 1728*K2**4 + 320*K2**3*K3*K5 + 224*K2**3*K4*K6 - 32*K2**3*K6 - 736*K2**2*K3**2 - 448*K2**2*K4**2 + 1000*K2**2*K4 - 496*K2**2 + 176*K2*K3*K5 + 128*K2*K4*K6 - 840*K3**2 - 424*K4**2 - 48*K5**2 - 24*K6**2 + 1606 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
False |