Gauss code |
O1O2O3O4O5U3U5O6U4U1U2U6 |
R3 orbit |
{'O1O2O3O4O5U3U5O6U4U1U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U4U5U2O6U1U3 |
Gauss code of K* |
O1O2O3O4U2U3U5U1U6O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U5U4U6U2U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 -2 0 1 3],[ 2 0 1 -2 1 1 3],[ 0 -1 0 -2 1 1 2],[ 2 2 2 0 2 1 1],[ 0 -1 -1 -2 0 0 1],[-1 -1 -1 -1 0 0 0],[-3 -3 -2 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 3 1 0 0 -2 -2],[-3 0 0 -1 -2 -1 -3],[-1 0 0 0 -1 -1 -1],[ 0 1 0 0 -1 -2 -1],[ 0 2 1 1 0 -2 -1],[ 2 1 1 2 2 0 2],[ 2 3 1 1 1 -2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,0,2,2,0,1,2,1,3,0,1,1,1,1,2,1,2,1,-2] |
Phi over symmetry |
[-3,-1,0,0,2,2,0,1,2,1,3,0,1,1,1,1,2,1,2,1,-2] |
Phi of -K |
[-2,-2,0,0,1,3,-2,0,0,2,4,1,1,2,2,-1,0,1,1,2,2] |
Phi of K* |
[-3,-1,0,0,2,2,2,1,2,2,4,0,1,2,2,1,1,0,1,0,-2] |
Phi of -K* |
[-2,-2,0,0,1,3,-2,1,1,1,3,2,2,1,1,-1,0,1,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+2t^2-t |
Normalized Jones-Krushkal polynomial |
11z+23 |
Enhanced Jones-Krushkal polynomial |
-8w^3z+19w^2z+23w |
Inner characteristic polynomial |
t^6+33t^4+31t^2 |
Outer characteristic polynomial |
t^7+51t^5+99t^3 |
Flat arrow polynomial |
8*K1**3 + 8*K1**2*K2 - 12*K1**2 - 6*K1*K2 - 4*K1*K3 - 3*K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial |
384*K1**4*K2**3 - 960*K1**4*K2**2 + 1024*K1**4*K2 - 1440*K1**4 + 160*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1024*K1**2*K2**4 + 1632*K1**2*K2**3 - 4400*K1**2*K2**2 + 3784*K1**2*K2 - 160*K1**2*K3**2 - 64*K1**2*K4**2 - 2648*K1**2 + 1536*K1*K2**3*K3 + 3928*K1*K2*K3 + 496*K1*K3*K4 + 64*K1*K4*K5 + 8*K1*K5*K6 - 192*K2**6 - 448*K2**4*K3**2 - 192*K2**4*K4**2 + 672*K2**4*K4 - 2096*K2**4 + 352*K2**3*K3*K5 + 128*K2**3*K4*K6 - 1376*K2**2*K3**2 - 536*K2**2*K4**2 + 1072*K2**2*K4 - 80*K2**2*K5**2 - 16*K2**2*K6**2 - 1182*K2**2 + 616*K2*K3*K5 + 192*K2*K4*K6 + 8*K2*K5*K7 + 8*K3**2*K6 - 1320*K3**2 - 552*K4**2 - 112*K5**2 - 34*K6**2 + 2734 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |