Gauss code |
O1O2O3O4O5O6U1U4U6U2U5U3 |
R3 orbit |
{'O1O2O3O4O5O6U1U4U6U2U5U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U4U2U5U1U3U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5O6U4U2U5U1U3U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -1 2 -1 3 2],[ 5 0 3 5 1 4 2],[ 1 -3 0 2 -1 2 1],[-2 -5 -2 0 -2 1 1],[ 1 -1 1 2 0 2 1],[-3 -4 -2 -1 -2 0 0],[-2 -2 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 3 2 2 -1 -1 -5],[-3 0 0 -1 -2 -2 -4],[-2 0 0 -1 -1 -1 -2],[-2 1 1 0 -2 -2 -5],[ 1 2 1 2 0 1 -1],[ 1 2 1 2 -1 0 -3],[ 5 4 2 5 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-2,1,1,5,0,1,2,2,4,1,1,1,2,2,2,5,-1,1,3] |
Phi over symmetry |
[-5,-1,-1,2,2,3,1,3,2,5,4,1,1,2,2,1,2,2,-1,0,1] |
Phi of -K |
[-5,-1,-1,2,2,3,1,3,2,5,4,1,1,2,2,1,2,2,-1,0,1] |
Phi of K* |
[-3,-2,-2,1,1,5,0,1,2,2,4,1,1,1,2,2,2,5,-1,1,3] |
Phi of -K* |
[-5,-1,-1,2,2,3,1,3,2,5,4,1,1,2,2,1,2,2,-1,0,1] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^5-t^3-2t^2+2t |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+21w^2z+27w |
Inner characteristic polynomial |
t^6+76t^4+15t^2 |
Outer characteristic polynomial |
t^7+120t^5+95t^3+4t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K3 - 4*K1**2 - 10*K1*K2 - K1 - 2*K2*K3 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial |
-800*K1**4 + 256*K1**2*K2**3 - 3168*K1**2*K2**2 - 192*K1**2*K2*K4 + 4944*K1**2*K2 - 32*K1**2*K3**2 - 4096*K1**2 + 1152*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1088*K1*K2**2*K3 - 128*K1*K2**2*K5 - 832*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 5040*K1*K2*K3 + 1248*K1*K3*K4 + 208*K1*K4*K5 + 16*K1*K5*K6 - 64*K2**6 - 256*K2**4*K3**2 + 128*K2**4*K4 - 32*K2**4*K6**2 - 1408*K2**4 + 128*K2**3*K3*K5 + 128*K2**3*K4*K6 - 128*K2**3*K6 + 320*K2**2*K3**2*K4 - 1504*K2**2*K3**2 - 64*K2**2*K3*K7 - 360*K2**2*K4**2 + 32*K2**2*K4*K6**2 + 2392*K2**2*K4 - 96*K2**2*K6**2 - 3530*K2**2 - 64*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 992*K2*K3*K5 - 96*K2*K4**2*K6 + 536*K2*K4*K6 + 64*K2*K6*K8 - 128*K3**2*K4**2 + 16*K3**2*K6 - 1920*K3**2 + 48*K3*K4*K7 - 8*K4**2*K6**2 + 16*K4**2*K8 - 1228*K4**2 - 160*K5**2 - 166*K6**2 - 8*K8**2 + 3826 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}]] |
If K is slice |
False |