Gauss code |
O1O2O3O4O5O6U1U4U6U3U2U5 |
R3 orbit |
{'O1O2O3O4O5O6U1U4U6U3U2U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U2U5U4U1U3U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U5U4U2U6U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U1U5U3U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 0 0 -1 4 2],[ 5 0 4 3 1 5 2],[ 0 -4 0 0 -1 3 1],[ 0 -3 0 0 -1 2 1],[ 1 -1 1 1 0 2 1],[-4 -5 -3 -2 -2 0 0],[-2 -2 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 4 2 0 0 -1 -5],[-4 0 0 -2 -3 -2 -5],[-2 0 0 -1 -1 -1 -2],[ 0 2 1 0 0 -1 -3],[ 0 3 1 0 0 -1 -4],[ 1 2 1 1 1 0 -1],[ 5 5 2 3 4 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,0,0,1,5,0,2,3,2,5,1,1,1,2,0,1,3,1,4,1] |
Phi over symmetry |
[-5,-1,0,0,2,4,1,3,4,2,5,1,1,1,2,0,1,2,1,3,0] |
Phi of -K |
[-5,-1,0,0,2,4,3,1,2,5,4,0,0,2,3,0,1,1,1,2,2] |
Phi of K* |
[-4,-2,0,0,1,5,2,1,2,3,4,1,1,2,5,0,0,1,0,2,3] |
Phi of -K* |
[-5,-1,0,0,2,4,1,3,4,2,5,1,1,1,2,0,1,2,1,3,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-t^4-t^2+t |
Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+23w^2z+23w |
Inner characteristic polynomial |
t^6+77t^4+11t^2 |
Outer characteristic polynomial |
t^7+123t^5+48t^3+4t |
Flat arrow polynomial |
4*K1**2*K2 - 2*K1**2 + K1 - 2*K2**2 - 2*K2*K3 - K2 + K5 + 2 |
2-strand cable arrow polynomial |
-384*K1**2*K2**2 - 640*K1**2*K2*K4 + 1784*K1**2*K2 - 448*K1**2*K3**2 - 224*K1**2*K4**2 - 3104*K1**2 + 160*K1*K2*K3*K4**2 - 416*K1*K2*K3*K4 + 2480*K1*K2*K3 - 96*K1*K2*K4*K5 - 64*K1*K2*K4*K7 + 96*K1*K3**3*K4 - 32*K1*K3*K4*K6 + 2072*K1*K3*K4 + 608*K1*K4*K5 + 56*K1*K5*K6 + 48*K1*K6*K7 - 2*K10**2 + 8*K10*K4*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 488*K2**4 - 96*K2**2*K3**2 + 32*K2**2*K4**3 - 432*K2**2*K4**2 + 1608*K2**2*K4 - 2614*K2**2 - 192*K2*K3**2*K4 + 32*K2*K3*K4**2*K5 - 64*K2*K3*K4*K5 + 576*K2*K3*K5 + 384*K2*K4*K6 + 40*K2*K5*K7 - 192*K3**4 - 192*K3**2*K4**2 + 248*K3**2*K6 - 1712*K3**2 + 176*K3*K4*K7 - 8*K4**4 - 32*K4**2*K5**2 - 8*K4**2*K6**2 - 1518*K4**2 + 8*K4*K5*K9 - 416*K5**2 - 168*K6**2 - 80*K7**2 + 3108 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}]] |
If K is slice |
False |