Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.391

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,0,1,2,2,1,1,1,1,1,1,2,-1,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.391']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+34t^5+40t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.391']
2-strand cable arrow polynomial of the knot is: 1952*K1**4*K2 - 5024*K1**4 + 832*K1**3*K2*K3 - 1472*K1**3*K3 - 128*K1**2*K2**4 + 416*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5648*K1**2*K2**2 - 608*K1**2*K2*K4 + 9744*K1**2*K2 - 1344*K1**2*K3**2 - 128*K1**2*K4**2 - 4648*K1**2 + 320*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 32*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 7320*K1*K2*K3 + 1736*K1*K3*K4 + 216*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 496*K2**4 - 304*K2**2*K3**2 - 48*K2**2*K4**2 + 856*K2**2*K4 - 4110*K2**2 + 248*K2*K3*K5 + 16*K2*K4*K6 - 2148*K3**2 - 600*K4**2 - 84*K5**2 - 2*K6**2 + 4350
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.391']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4358', 'vk6.4389', 'vk6.5676', 'vk6.5707', 'vk6.7741', 'vk6.7772', 'vk6.9219', 'vk6.9250', 'vk6.10474', 'vk6.10547', 'vk6.10642', 'vk6.10693', 'vk6.10724', 'vk6.10829', 'vk6.14626', 'vk6.15326', 'vk6.15453', 'vk6.16245', 'vk6.17995', 'vk6.24433', 'vk6.30161', 'vk6.30234', 'vk6.30329', 'vk6.30456', 'vk6.33960', 'vk6.34365', 'vk6.34421', 'vk6.43860', 'vk6.50428', 'vk6.50458', 'vk6.54214', 'vk6.63434']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U4U2O6U5U6U1U3
R3 orbit {'O1O2O3O4O5U4U2O6U5U6U1U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U3U5U6U1O6U4U2
Gauss code of K* O1O2O3O4U3U5U4U6U1O6O5U2
Gauss code of -K* O1O2O3O4U3O5O6U4U6U1U5U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 2 -1 1 1],[ 1 0 -1 2 -1 1 1],[ 2 1 0 2 0 2 1],[-2 -2 -2 0 -1 0 1],[ 1 1 0 1 0 1 1],[-1 -1 -2 0 -1 0 1],[-1 -1 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 1 0 -1 -2 -2],[-1 -1 0 -1 -1 -1 -1],[-1 0 1 0 -1 -1 -2],[ 1 1 1 1 0 1 0],[ 1 2 1 1 -1 0 -1],[ 2 2 1 2 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,-1,0,1,2,2,1,1,1,1,1,1,2,-1,0,1]
Phi over symmetry [-2,-1,-1,1,1,2,-1,0,1,2,2,1,1,1,1,1,1,2,-1,0,1]
Phi of -K [-2,-1,-1,1,1,2,0,1,1,2,2,1,1,1,1,1,1,2,-1,1,2]
Phi of K* [-2,-1,-1,1,1,2,1,2,1,2,2,1,1,1,1,1,1,2,-1,0,1]
Phi of -K* [-2,-1,-1,1,1,2,0,1,1,2,2,1,1,1,1,1,1,2,-1,-1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+22t^4+16t^2+1
Outer characteristic polynomial t^7+34t^5+40t^3+5t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial 1952*K1**4*K2 - 5024*K1**4 + 832*K1**3*K2*K3 - 1472*K1**3*K3 - 128*K1**2*K2**4 + 416*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5648*K1**2*K2**2 - 608*K1**2*K2*K4 + 9744*K1**2*K2 - 1344*K1**2*K3**2 - 128*K1**2*K4**2 - 4648*K1**2 + 320*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 32*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 7320*K1*K2*K3 + 1736*K1*K3*K4 + 216*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 496*K2**4 - 304*K2**2*K3**2 - 48*K2**2*K4**2 + 856*K2**2*K4 - 4110*K2**2 + 248*K2*K3*K5 + 16*K2*K4*K6 - 2148*K3**2 - 600*K4**2 - 84*K5**2 - 2*K6**2 + 4350
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact