Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.401

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,-1,2,2,2,0,1,1,1,1,2,1,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.401']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+38t^5+60t^3+14t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.401']
2-strand cable arrow polynomial of the knot is: 160*K1**4*K2 - 912*K1**4 + 160*K1**3*K2*K3 - 256*K1**3*K3 + 128*K1**2*K2**3 - 3600*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 5648*K1**2*K2 - 496*K1**2*K3**2 - 32*K1**2*K4**2 - 4912*K1**2 + 128*K1*K2**3*K3 - 768*K1*K2**2*K3 - 64*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 6144*K1*K2*K3 + 1072*K1*K3*K4 + 184*K1*K4*K5 - 592*K2**4 - 368*K2**2*K3**2 - 48*K2**2*K4**2 + 1392*K2**2*K4 - 4220*K2**2 + 592*K2*K3*K5 + 32*K2*K4*K6 - 2372*K3**2 - 824*K4**2 - 244*K5**2 - 4*K6**2 + 4262
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.401']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3630', 'vk6.3717', 'vk6.3908', 'vk6.4013', 'vk6.7052', 'vk6.7105', 'vk6.7280', 'vk6.7383', 'vk6.11388', 'vk6.12571', 'vk6.12682', 'vk6.19115', 'vk6.19160', 'vk6.19821', 'vk6.25724', 'vk6.25783', 'vk6.26254', 'vk6.26699', 'vk6.30996', 'vk6.31123', 'vk6.32176', 'vk6.37843', 'vk6.37898', 'vk6.44975', 'vk6.48258', 'vk6.48437', 'vk6.50014', 'vk6.50157', 'vk6.52146', 'vk6.63727', 'vk6.66208', 'vk6.66235']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U4U3O6U5U1U6U2
R3 orbit {'O1O2O3O4O5U4U3O6U5U1U6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U4U6U5U1O6U3U2
Gauss code of K* O1O2O3O4U2U4U5U6U1O6O5U3
Gauss code of -K* O1O2O3O4U2O5O6U4U6U5U1U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 -1 -1 1 2],[ 2 0 2 -1 -1 2 2],[-1 -2 0 -1 -1 1 1],[ 1 1 1 0 0 2 1],[ 1 1 1 0 0 1 1],[-1 -2 -1 -2 -1 0 1],[-2 -2 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -1 -1 -2],[-1 1 0 1 -1 -1 -2],[-1 1 -1 0 -1 -2 -2],[ 1 1 1 1 0 0 1],[ 1 1 1 2 0 0 1],[ 2 2 2 2 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,1,1,1,1,2,-1,1,1,2,1,2,2,0,-1,-1]
Phi over symmetry [-2,-1,-1,1,1,2,-1,-1,2,2,2,0,1,1,1,1,2,1,1,1,1]
Phi of -K [-2,-1,-1,1,1,2,2,2,1,1,2,0,0,1,2,1,1,2,1,0,0]
Phi of K* [-2,-1,-1,1,1,2,0,0,2,2,2,-1,0,1,1,1,1,1,0,2,2]
Phi of -K* [-2,-1,-1,1,1,2,-1,-1,2,2,2,0,1,1,1,1,2,1,1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+26t^4+22t^2+1
Outer characteristic polynomial t^7+38t^5+60t^3+14t
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial 160*K1**4*K2 - 912*K1**4 + 160*K1**3*K2*K3 - 256*K1**3*K3 + 128*K1**2*K2**3 - 3600*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 5648*K1**2*K2 - 496*K1**2*K3**2 - 32*K1**2*K4**2 - 4912*K1**2 + 128*K1*K2**3*K3 - 768*K1*K2**2*K3 - 64*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 6144*K1*K2*K3 + 1072*K1*K3*K4 + 184*K1*K4*K5 - 592*K2**4 - 368*K2**2*K3**2 - 48*K2**2*K4**2 + 1392*K2**2*K4 - 4220*K2**2 + 592*K2*K3*K5 + 32*K2*K4*K6 - 2372*K3**2 - 824*K4**2 - 244*K5**2 - 4*K6**2 + 4262
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact