Gauss code |
O1O2O3O4O5U4U5O6U1U2U6U3 |
R3 orbit |
{'O1O2O3O4O5U4U5O6U1U2U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U6U4U5O6U1U2 |
Gauss code of K* |
O1O2O3O4U1U2U4U5U6O5O6U3 |
Gauss code of -K* |
O1O2O3O4U2O5O6U5U6U1U3U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 2 -1 1 2],[ 3 0 1 3 -1 1 2],[ 1 -1 0 2 -1 1 1],[-2 -3 -2 0 -1 1 0],[ 1 1 1 1 0 1 0],[-1 -1 -1 -1 -1 0 0],[-2 -2 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 -1 -1 -3],[-2 0 0 1 -1 -2 -3],[-2 0 0 0 0 -1 -2],[-1 -1 0 0 -1 -1 -1],[ 1 1 0 1 0 1 1],[ 1 2 1 1 -1 0 -1],[ 3 3 2 1 -1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,1,1,3,0,-1,1,2,3,0,0,1,2,1,1,1,-1,-1,1] |
Phi over symmetry |
[-3,-1,-1,1,2,2,-1,1,1,2,3,1,1,0,1,1,1,2,0,-1,0] |
Phi of -K |
[-3,-1,-1,1,2,2,1,3,3,2,3,1,1,1,2,1,2,3,2,1,0] |
Phi of K* |
[-2,-2,-1,1,1,3,0,1,2,3,3,2,1,2,2,1,1,3,-1,1,3] |
Phi of -K* |
[-3,-1,-1,1,2,2,-1,1,1,2,3,1,1,0,1,1,1,2,0,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
z^2+6z+9 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+5w^3z^2-12w^3z+18w^2z+9w |
Inner characteristic polynomial |
t^6+26t^4+32t^2+1 |
Outer characteristic polynomial |
t^7+46t^5+82t^3+11t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 4*K1**2 - 6*K1*K2 - 4*K1*K3 - 3*K1 + 2*K2 + K3 + K4 + 2 |
2-strand cable arrow polynomial |
-1024*K1**4*K2**2 + 416*K1**4*K2 - 704*K1**4 + 512*K1**3*K2**3*K3 + 1632*K1**3*K2*K3 - 128*K1**3*K3 - 2560*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3168*K1**2*K2**3 - 512*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 7600*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 4216*K1**2*K2 - 1280*K1**2*K3**2 - 64*K1**2*K3*K5 - 1700*K1**2 + 640*K1*K2**5*K3 - 640*K1*K2**4*K3 - 128*K1*K2**4*K5 + 4864*K1*K2**3*K3 + 448*K1*K2**2*K3*K4 - 2144*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 608*K1*K2**2*K5 + 96*K1*K2*K3**3 - 288*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 6248*K1*K2*K3 - 32*K1*K2*K4*K5 - 32*K1*K2*K5*K6 + 1160*K1*K3*K4 + 72*K1*K4*K5 + 16*K1*K5*K6 + 8*K1*K6*K7 - 576*K2**6 - 896*K2**4*K3**2 - 32*K2**4*K4**2 + 544*K2**4*K4 - 3488*K2**4 + 448*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 + 64*K2**2*K3**2*K4 - 2528*K2**2*K3**2 - 32*K2**2*K3*K7 - 184*K2**2*K4**2 + 2240*K2**2*K4 - 80*K2**2*K5**2 - 48*K2**2*K6**2 - 22*K2**2 + 1064*K2*K3*K5 + 136*K2*K4*K6 + 24*K2*K5*K7 + 16*K2*K6*K8 + 8*K3**2*K6 - 1344*K3**2 - 384*K4**2 - 104*K5**2 - 26*K6**2 - 4*K7**2 - 2*K8**2 + 1824 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}]] |
If K is slice |
False |