Gauss code |
O1O2O3O4O5U4U5O6U2U1U3U6 |
R3 orbit |
{'O1O2O3O4O5U4U5O6U2U1U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U3U5U4O6U1U2 |
Gauss code of K* |
O1O2O3O4U2U1U3U5U6O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U5U6U2U4U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 1 -1 1 3],[ 2 0 0 2 -1 1 3],[ 2 0 0 1 -1 1 2],[-1 -2 -1 0 -1 1 1],[ 1 1 1 1 0 1 0],[-1 -1 -1 -1 -1 0 0],[-3 -3 -2 -1 0 0 0]] |
Primitive based matrix |
[[ 0 3 1 1 -1 -2 -2],[-3 0 0 -1 0 -2 -3],[-1 0 0 -1 -1 -1 -1],[-1 1 1 0 -1 -1 -2],[ 1 0 1 1 0 1 1],[ 2 2 1 1 -1 0 0],[ 2 3 1 2 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,1,2,2,0,1,0,2,3,1,1,1,1,1,1,2,-1,-1,0] |
Phi over symmetry |
[-3,-1,-1,1,2,2,0,1,0,2,3,1,1,1,1,1,1,2,-1,-1,0] |
Phi of -K |
[-2,-2,-1,1,1,3,0,2,1,2,2,2,2,2,3,1,1,4,-1,1,2] |
Phi of K* |
[-3,-1,-1,1,2,2,1,2,4,2,3,1,1,1,2,1,2,2,2,2,0] |
Phi of -K* |
[-2,-2,-1,1,1,3,0,-1,1,1,2,-1,1,2,3,1,1,0,-1,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+2t^2-t |
Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+11w^3z^2+24w^2z+21w |
Inner characteristic polynomial |
t^6+26t^4+34t^2+1 |
Outer characteristic polynomial |
t^7+46t^5+82t^3+13t |
Flat arrow polynomial |
4*K1**2*K2 - 2*K1**2 - 2*K1*K2 - 2*K1*K3 + K1 - 2*K2**2 + K3 + K4 + 2 |
2-strand cable arrow polynomial |
512*K1**4*K2 - 2624*K1**4 - 256*K1**3*K2**2*K3 + 2688*K1**3*K2*K3 + 128*K1**3*K3*K4 - 1504*K1**3*K3 - 512*K1**2*K2**4 + 320*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 + 512*K1**2*K2**2*K4 - 5808*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 32*K1**2*K2*K4**2 - 1280*K1**2*K2*K4 + 5408*K1**2*K2 - 2912*K1**2*K3**2 - 272*K1**2*K4**2 - 1836*K1**2 + 256*K1*K2**5*K3 - 256*K1*K2**3*K3*K4 + 2880*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 512*K1*K2**2*K3 - 704*K1*K2**2*K5 + 384*K1*K2*K3**3 + 96*K1*K2*K3*K4**2 - 1024*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 6792*K1*K2*K3 - 96*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 2016*K1*K3*K4 + 256*K1*K4*K5 + 8*K1*K5*K6 + 8*K1*K6*K7 - 128*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1144*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 + 256*K2**2*K3**2*K4 - 2256*K2**2*K3**2 - 64*K2**2*K3*K7 + 32*K2**2*K4**3 - 264*K2**2*K4**2 - 32*K2**2*K4*K8 + 872*K2**2*K4 - 8*K2**2*K6**2 - 1330*K2**2 - 64*K2*K3**2*K4 + 1160*K2*K3*K5 + 168*K2*K4*K6 + 8*K2*K6*K8 - 128*K3**4 - 80*K3**2*K4**2 + 32*K3**2*K6 - 1392*K3**2 + 32*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 380*K4**2 - 64*K5**2 - 14*K6**2 - 4*K7**2 - 2*K8**2 + 2060 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{6}, {4, 5}, {3}, {1, 2}]] |
If K is slice |
False |