| Gauss code | 
O1O2O3O4O5U4U5O6U2U1U6U3 | 
| R3 orbit | 
{'O1O2O3O4O5U4U5O6U2U1U6U3'} | 
| R3 orbit length | 
1 | 
| Gauss code of -K | 
O1O2O3O4O5U3U6U5U4O6U1U2 | 
| Gauss code of K* | 
O1O2O3O4U2U1U4U5U6O5O6U3 | 
| Gauss code of -K* | 
O1O2O3O4U2O5O6U5U6U1U4U3 | 
| Diagrammatic symmetry type | 
c | 
| Flat genus of the diagram | 
3 | 
| If K is checkerboard colorable | 
False | 
| If K is almost classical | 
False | 
| Based matrix from Gauss code | 
[[ 0 -2 -2 2 -1 1 2],[ 2 0 0 3 -1 1 2],[ 2 0 0 2 -1 1 1],[-2 -3 -2 0 -1 1 0],[ 1 1 1 1 0 1 0],[-1 -1 -1 -1 -1 0 0],[-2 -2 -1 0 0 0 0]] | 
| Primitive based matrix | 
[[ 0 2 2 1 -1 -2 -2],[-2 0 0 1 -1 -2 -3],[-2 0 0 0 0 -1 -2],[-1 -1 0 0 -1 -1 -1],[ 1 1 0 1 0 1 1],[ 2 2 1 1 -1 0 0],[ 2 3 2 1 -1 0 0]] | 
| If based matrix primitive | 
True | 
| Phi of primitive based matrix | 
[-2,-2,-1,1,2,2,0,-1,1,2,3,0,0,1,2,1,1,1,-1,-1,0] | 
| Phi over symmetry | 
[-2,-2,-1,1,2,2,0,-1,1,1,2,-1,1,2,3,1,0,1,0,-1,0] | 
| Phi of -K | 
[-2,-2,-1,1,2,2,0,2,2,1,2,2,2,2,3,1,2,3,2,1,0] | 
| Phi of K* | 
[-2,-2,-1,1,2,2,0,1,3,2,3,2,2,1,2,1,2,2,2,2,0] | 
| Phi of -K* | 
[-2,-2,-1,1,2,2,0,-1,1,1,2,-1,1,2,3,1,0,1,0,-1,0] | 
| Symmetry type of based matrix | 
c | 
| u-polynomial | 
0 | 
| Normalized Jones-Krushkal polynomial | 
3z^2+8z+5 | 
| Enhanced Jones-Krushkal polynomial | 
-6w^4z^2+9w^3z^2-16w^3z+24w^2z+5w | 
| Inner characteristic polynomial | 
t^6+25t^4+33t^2+1 | 
| Outer characteristic polynomial | 
t^7+43t^5+85t^3+19t | 
| Flat arrow polynomial | 
8*K1**3 - 4*K1*K2 - 4*K1 + 1 | 
| 2-strand cable arrow polynomial | 
-640*K1**2*K2**4 + 960*K1**2*K2**3 + 512*K1**2*K2**2*K4 - 5856*K1**2*K2**2 - 384*K1**2*K2*K4 + 4352*K1**2*K2 - 256*K1**2*K4**2 - 2128*K1**2 + 960*K1*K2**3*K3 - 960*K1*K2**2*K3 - 512*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 4160*K1*K2*K3 + 496*K1*K3*K4 + 240*K1*K4*K5 - 960*K2**6 + 1696*K2**4*K4 - 5216*K2**4 - 448*K2**3*K6 - 160*K2**2*K3**2 - 656*K2**2*K4**2 + 3880*K2**2*K4 + 288*K2**2 + 128*K2*K3*K5 + 280*K2*K4*K6 - 624*K3**2 - 600*K4**2 - 32*K5**2 - 16*K6**2 + 1750 | 
| Genus of based matrix | 
0 | 
| Fillings of based matrix | 
[[{2, 6}, {4, 5}, {1, 3}]] | 
| If K is slice | 
True |