| Gauss code |
O1O2O3O4O5U6U1O6U3U4U5U2 |
| R3 orbit |
{'O1O2O3O4O5U6U1O6U3U4U5U2'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4O5U4U1U2U3O6U5U6 |
| Gauss code of K* |
O1O2O3O4U5U4U1U2U3O6O5U6 |
| Gauss code of -K* |
O1O2O3O4U5O6O5U2U3U4U1U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 1 -1 1 3 -1],[ 3 0 3 0 1 2 3],[-1 -3 0 -2 0 2 -1],[ 1 0 2 0 1 2 1],[-1 -1 0 -1 0 1 -1],[-3 -2 -2 -2 -1 0 -3],[ 1 -3 1 -1 1 3 0]] |
| Primitive based matrix |
[[ 0 3 1 1 -1 -1 -3],[-3 0 -1 -2 -2 -3 -2],[-1 1 0 0 -1 -1 -1],[-1 2 0 0 -2 -1 -3],[ 1 2 1 2 0 1 0],[ 1 3 1 1 -1 0 -3],[ 3 2 1 3 0 3 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-3,-1,-1,1,1,3,1,2,2,3,2,0,1,1,1,2,1,3,-1,0,3] |
| Phi over symmetry |
[-3,-1,-1,1,1,3,-1,2,1,3,4,1,1,1,1,0,1,2,0,0,1] |
| Phi of -K |
[-3,-1,-1,1,1,3,-1,2,1,3,4,1,1,1,1,0,1,2,0,0,1] |
| Phi of K* |
[-3,-1,-1,1,1,3,0,1,1,2,4,0,1,0,1,1,1,3,-1,-1,2] |
| Phi of -K* |
[-3,-1,-1,1,1,3,0,3,1,3,2,1,1,2,2,1,1,3,0,1,2] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
2z^2+7z+7 |
| Enhanced Jones-Krushkal polynomial |
-6w^4z^2+8w^3z^2-10w^3z+17w^2z+7w |
| Inner characteristic polynomial |
t^6+49t^4+50t^2 |
| Outer characteristic polynomial |
t^7+71t^5+122t^3+6t |
| Flat arrow polynomial |
8*K1**3 - 4*K1*K2 - 4*K1 + 1 |
| 2-strand cable arrow polynomial |
896*K1**2*K2**5 - 4480*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3840*K1**2*K2**3 - 4928*K1**2*K2**2 - 96*K1**2*K2*K4 + 3000*K1**2*K2 - 1824*K1**2 - 512*K1*K2**4*K3 + 2880*K1*K2**3*K3 - 352*K1*K2**2*K3 + 2408*K1*K2*K3 + 40*K1*K3*K4 - 1216*K2**6 + 864*K2**4*K4 - 1408*K2**4 - 352*K2**2*K3**2 - 80*K2**2*K4**2 + 648*K2**2*K4 + 104*K2**2 - 392*K3**2 - 104*K4**2 + 1190 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}]] |
| If K is slice |
False |