Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.428

Min(phi) over symmetries of the knot is: [-3,-2,0,1,1,3,0,2,1,2,4,1,1,1,2,1,1,3,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.428']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+72t^5+85t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.425', '6.428']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 224*K1**4*K2 - 1376*K1**4 + 96*K1**3*K2*K3 - 1248*K1**3*K3 - 1056*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 288*K1**2*K2*K4 + 5696*K1**2*K2 - 896*K1**2*K3**2 - 96*K1**2*K3*K5 - 176*K1**2*K4**2 - 96*K1**2*K4*K6 - 5268*K1**2 - 352*K1*K2**2*K3 - 224*K1*K2*K3*K4 + 5056*K1*K2*K3 - 32*K1*K3**2*K5 + 1664*K1*K3*K4 + 464*K1*K4*K5 + 88*K1*K5*K6 - 56*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 480*K2**2*K4 - 3556*K2**2 - 32*K2*K3**2*K4 + 320*K2*K3*K5 + 128*K2*K4*K6 + 56*K3**2*K6 - 2168*K3**2 - 758*K4**2 - 228*K5**2 - 84*K6**2 + 3892
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.428']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.19998', 'vk6.20076', 'vk6.21270', 'vk6.21358', 'vk6.27049', 'vk6.27141', 'vk6.28754', 'vk6.28830', 'vk6.38446', 'vk6.38542', 'vk6.40635', 'vk6.40739', 'vk6.45330', 'vk6.45442', 'vk6.47099', 'vk6.47184', 'vk6.56813', 'vk6.56897', 'vk6.57947', 'vk6.58035', 'vk6.61331', 'vk6.61427', 'vk6.62507', 'vk6.62584', 'vk6.66533', 'vk6.66605', 'vk6.67322', 'vk6.67396', 'vk6.69179', 'vk6.69257', 'vk6.69930', 'vk6.69998']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U6U1O6U4U2U5U3
R3 orbit {'O1O2O3O4O5U6U1O6U4U2U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U3U1U4U2O6U5U6
Gauss code of K* O1O2O3O4U5U2U4U1U3O6O5U6
Gauss code of -K* O1O2O3O4U5O6O5U2U4U1U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 2 0 3 -1],[ 3 0 1 3 0 2 3],[ 1 -1 0 2 0 2 1],[-2 -3 -2 0 -1 1 -2],[ 0 0 0 1 0 1 0],[-3 -2 -2 -1 -1 0 -3],[ 1 -3 -1 2 0 3 0]]
Primitive based matrix [[ 0 3 2 0 -1 -1 -3],[-3 0 -1 -1 -2 -3 -2],[-2 1 0 -1 -2 -2 -3],[ 0 1 1 0 0 0 0],[ 1 2 2 0 0 1 -1],[ 1 3 2 0 -1 0 -3],[ 3 2 3 0 1 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,0,1,1,3,1,1,2,3,2,1,2,2,3,0,0,0,-1,1,3]
Phi over symmetry [-3,-2,0,1,1,3,0,2,1,2,4,1,1,1,2,1,1,3,-1,-1,1]
Phi of -K [-3,-1,-1,0,2,3,-1,1,3,2,4,1,1,1,1,1,1,2,1,2,0]
Phi of K* [-3,-2,0,1,1,3,0,2,1,2,4,1,1,1,2,1,1,3,-1,-1,1]
Phi of -K* [-3,-1,-1,0,2,3,1,3,0,3,2,1,0,2,2,0,2,3,1,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+48t^4+32t^2
Outer characteristic polynomial t^7+72t^5+85t^3+4t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -64*K1**6 + 224*K1**4*K2 - 1376*K1**4 + 96*K1**3*K2*K3 - 1248*K1**3*K3 - 1056*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 288*K1**2*K2*K4 + 5696*K1**2*K2 - 896*K1**2*K3**2 - 96*K1**2*K3*K5 - 176*K1**2*K4**2 - 96*K1**2*K4*K6 - 5268*K1**2 - 352*K1*K2**2*K3 - 224*K1*K2*K3*K4 + 5056*K1*K2*K3 - 32*K1*K3**2*K5 + 1664*K1*K3*K4 + 464*K1*K4*K5 + 88*K1*K5*K6 - 56*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 480*K2**2*K4 - 3556*K2**2 - 32*K2*K3**2*K4 + 320*K2*K3*K5 + 128*K2*K4*K6 + 56*K3**2*K6 - 2168*K3**2 - 758*K4**2 - 228*K5**2 - 84*K6**2 + 3892
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact