Min(phi) over symmetries of the knot is: [-5,-1,0,1,1,4,2,1,3,5,4,0,1,2,3,0,1,1,0,2,3] |
Flat knots (up to 7 crossings) with same phi are :['6.43'] |
Arrow polynomial of the knot is: 8*K1**3 + 4*K1**2*K2 + 4*K1**2*K3 - 14*K1**2 - 10*K1*K2 - 2*K1*K3 - 2*K1*K4 - 2*K1 + 6*K2 + 2*K3 + 7 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.43'] |
Outer characteristic polynomial of the knot is: t^7+128t^5+94t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.43'] |
2-strand cable arrow polynomial of the knot is: -320*K1**4*K2**2 + 1568*K1**4*K2 - 3360*K1**4 + 128*K1**3*K2**3*K3 - 768*K1**3*K2**2*K3 + 1376*K1**3*K2*K3 - 704*K1**3*K3 - 384*K1**2*K2**4 + 256*K1**2*K2**3*K3**2 + 3200*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 11952*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 1088*K1**2*K2*K4 + 11672*K1**2*K2 - 544*K1**2*K3**2 - 128*K1**2*K4**2 - 6768*K1**2 - 256*K1*K2**4*K3 - 128*K1*K2**3*K3*K4 + 3488*K1*K2**3*K3 + 768*K1*K2**2*K3*K4 - 2912*K1*K2**2*K3 + 192*K1*K2**2*K4*K5 + 32*K1*K2**2*K5*K6 - 480*K1*K2**2*K5 + 96*K1*K2*K3**3 - 704*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 10784*K1*K2*K3 - 128*K1*K2*K4*K5 - 64*K1*K2*K4*K7 - 32*K1*K2*K5*K6 + 1824*K1*K3*K4 + 472*K1*K4*K5 + 24*K1*K5*K6 - 64*K2**6 - 448*K2**4*K3**2 - 32*K2**4*K4**2 + 512*K2**4*K4 - 32*K2**4*K6**2 - 4200*K2**4 + 416*K2**3*K3*K5 + 160*K2**3*K4*K6 + 32*K2**3*K5*K7 + 32*K2**3*K6*K8 - 128*K2**3*K6 + 64*K2**2*K3**2*K6 - 2560*K2**2*K3**2 + 32*K2**2*K3*K4*K7 - 64*K2**2*K3*K7 - 904*K2**2*K4**2 - 32*K2**2*K4*K8 + 3792*K2**2*K4 - 272*K2**2*K5**2 - 136*K2**2*K6**2 - 32*K2**2*K7**2 - 8*K2**2*K8**2 - 4264*K2**2 - 160*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1456*K2*K3*K5 + 504*K2*K4*K6 + 136*K2*K5*K7 + 32*K2*K6*K8 + 56*K3**2*K6 - 3088*K3**2 + 16*K3*K4*K7 - 1360*K4**2 - 408*K5**2 - 80*K6**2 - 16*K7**2 - 4*K8**2 + 6210 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.43'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.19944', 'vk6.20059', 'vk6.21189', 'vk6.21340', 'vk6.26909', 'vk6.27120', 'vk6.28663', 'vk6.28809', 'vk6.38329', 'vk6.38517', 'vk6.40469', 'vk6.40715', 'vk6.45202', 'vk6.45413', 'vk6.47025', 'vk6.47157', 'vk6.56733', 'vk6.56865', 'vk6.57833', 'vk6.58005', 'vk6.61158', 'vk6.61390', 'vk6.62399', 'vk6.62552', 'vk6.66428', 'vk6.66572', 'vk6.67199', 'vk6.67364', 'vk6.69081', 'vk6.69220', 'vk6.69862', 'vk6.69963'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5O6U1U5U3U4U6U2 |
R3 orbit | {'O1O2O3O4O5O6U1U5U3U4U6U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5O6U5U1U3U4U2U6 |
Gauss code of K* | O1O2O3O4O5O6U1U6U3U4U2U5 |
Gauss code of -K* | O1O2O3O4O5O6U2U5U3U4U1U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -5 1 -1 1 0 4],[ 5 0 5 2 3 1 4],[-1 -5 0 -2 0 -1 3],[ 1 -2 2 0 1 0 3],[-1 -3 0 -1 0 0 2],[ 0 -1 1 0 0 0 1],[-4 -4 -3 -3 -2 -1 0]] |
Primitive based matrix | [[ 0 4 1 1 0 -1 -5],[-4 0 -2 -3 -1 -3 -4],[-1 2 0 0 0 -1 -3],[-1 3 0 0 -1 -2 -5],[ 0 1 0 1 0 0 -1],[ 1 3 1 2 0 0 -2],[ 5 4 3 5 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-4,-1,-1,0,1,5,2,3,1,3,4,0,0,1,3,1,2,5,0,1,2] |
Phi over symmetry | [-5,-1,0,1,1,4,2,1,3,5,4,0,1,2,3,0,1,1,0,2,3] |
Phi of -K | [-5,-1,0,1,1,4,2,4,1,3,5,1,0,1,2,0,1,3,0,0,1] |
Phi of K* | [-4,-1,-1,0,1,5,0,1,3,2,5,0,0,0,1,1,1,3,1,4,2] |
Phi of -K* | [-5,-1,0,1,1,4,2,1,3,5,4,0,1,2,3,0,1,1,0,2,3] |
Symmetry type of based matrix | c |
u-polynomial | t^5-t^4-t |
Normalized Jones-Krushkal polynomial | 6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial | 6w^3z^2+27w^2z+31w |
Inner characteristic polynomial | t^6+84t^4+28t^2+1 |
Outer characteristic polynomial | t^7+128t^5+94t^3+8t |
Flat arrow polynomial | 8*K1**3 + 4*K1**2*K2 + 4*K1**2*K3 - 14*K1**2 - 10*K1*K2 - 2*K1*K3 - 2*K1*K4 - 2*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial | -320*K1**4*K2**2 + 1568*K1**4*K2 - 3360*K1**4 + 128*K1**3*K2**3*K3 - 768*K1**3*K2**2*K3 + 1376*K1**3*K2*K3 - 704*K1**3*K3 - 384*K1**2*K2**4 + 256*K1**2*K2**3*K3**2 + 3200*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 11952*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 1088*K1**2*K2*K4 + 11672*K1**2*K2 - 544*K1**2*K3**2 - 128*K1**2*K4**2 - 6768*K1**2 - 256*K1*K2**4*K3 - 128*K1*K2**3*K3*K4 + 3488*K1*K2**3*K3 + 768*K1*K2**2*K3*K4 - 2912*K1*K2**2*K3 + 192*K1*K2**2*K4*K5 + 32*K1*K2**2*K5*K6 - 480*K1*K2**2*K5 + 96*K1*K2*K3**3 - 704*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 10784*K1*K2*K3 - 128*K1*K2*K4*K5 - 64*K1*K2*K4*K7 - 32*K1*K2*K5*K6 + 1824*K1*K3*K4 + 472*K1*K4*K5 + 24*K1*K5*K6 - 64*K2**6 - 448*K2**4*K3**2 - 32*K2**4*K4**2 + 512*K2**4*K4 - 32*K2**4*K6**2 - 4200*K2**4 + 416*K2**3*K3*K5 + 160*K2**3*K4*K6 + 32*K2**3*K5*K7 + 32*K2**3*K6*K8 - 128*K2**3*K6 + 64*K2**2*K3**2*K6 - 2560*K2**2*K3**2 + 32*K2**2*K3*K4*K7 - 64*K2**2*K3*K7 - 904*K2**2*K4**2 - 32*K2**2*K4*K8 + 3792*K2**2*K4 - 272*K2**2*K5**2 - 136*K2**2*K6**2 - 32*K2**2*K7**2 - 8*K2**2*K8**2 - 4264*K2**2 - 160*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1456*K2*K3*K5 + 504*K2*K4*K6 + 136*K2*K5*K7 + 32*K2*K6*K8 + 56*K3**2*K6 - 3088*K3**2 + 16*K3*K4*K7 - 1360*K4**2 - 408*K5**2 - 80*K6**2 - 16*K7**2 - 4*K8**2 + 6210 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |