Min(phi) over symmetries of the knot is: [-3,-3,0,1,2,3,0,1,1,3,2,2,1,4,3,1,2,1,-1,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.434'] |
Arrow polynomial of the knot is: -2*K1*K2 - 2*K1*K3 + K1 - 2*K2**2 + K2 + K3 + 2*K4 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.373', '6.434', '6.878', '6.886', '6.952', '6.1160'] |
Outer characteristic polynomial of the knot is: t^7+98t^5+351t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.434'] |
2-strand cable arrow polynomial of the knot is: -400*K1**4 + 384*K1**3*K2*K3 + 32*K1**3*K3*K4 - 832*K1**3*K3 - 544*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 160*K1**2*K2*K4 + 3008*K1**2*K2 - 2128*K1**2*K3**2 - 128*K1**2*K3*K5 - 96*K1**2*K4**2 - 4144*K1**2 + 64*K1*K2**3*K3 - 736*K1*K2**2*K3 + 384*K1*K2*K3**3 + 64*K1*K2*K3*K4**2 - 256*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 5888*K1*K2*K3 - 32*K1*K3**2*K5 + 2632*K1*K3*K4 + 288*K1*K4*K5 + 16*K1*K5*K6 + 8*K1*K6*K7 - 32*K2**4 - 1520*K2**2*K3**2 - 40*K2**2*K4**2 + 400*K2**2*K4 - 8*K2**2*K6**2 - 2954*K2**2 - 128*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 1224*K2*K3*K5 + 48*K2*K4*K6 + 16*K2*K6*K8 - 320*K3**4 - 144*K3**2*K4**2 + 208*K3**2*K6 - 2512*K3**2 + 120*K3*K4*K7 - 8*K4**4 + 16*K4**2*K8 - 842*K4**2 - 316*K5**2 - 46*K6**2 - 20*K7**2 - 12*K8**2 + 3460 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.434'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16990', 'vk6.17233', 'vk6.20208', 'vk6.21492', 'vk6.23396', 'vk6.23705', 'vk6.27396', 'vk6.29018', 'vk6.35457', 'vk6.35899', 'vk6.38815', 'vk6.40996', 'vk6.42893', 'vk6.43194', 'vk6.45570', 'vk6.47347', 'vk6.55159', 'vk6.55406', 'vk6.57050', 'vk6.58157', 'vk6.59539', 'vk6.59882', 'vk6.61556', 'vk6.62732', 'vk6.64969', 'vk6.65176', 'vk6.66669', 'vk6.67504', 'vk6.68261', 'vk6.68417', 'vk6.69320', 'vk6.70076'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U6U2O6U1U3U5U4 |
R3 orbit | {'O1O2O3O4O5U6U2O6U1U3U5U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U2U1U3U5O6U4U6 |
Gauss code of K* | O1O2O3O4U1U5U2U4U3O6O5U6 |
Gauss code of -K* | O1O2O3O4U5O6O5U2U1U3U6U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -2 0 3 3 -1],[ 3 0 1 2 4 3 2],[ 2 -1 0 0 2 1 2],[ 0 -2 0 0 2 1 0],[-3 -4 -2 -2 0 0 -3],[-3 -3 -1 -1 0 0 -3],[ 1 -2 -2 0 3 3 0]] |
Primitive based matrix | [[ 0 3 3 0 -1 -2 -3],[-3 0 0 -1 -3 -1 -3],[-3 0 0 -2 -3 -2 -4],[ 0 1 2 0 0 0 -2],[ 1 3 3 0 0 -2 -2],[ 2 1 2 0 2 0 -1],[ 3 3 4 2 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-3,0,1,2,3,0,1,3,1,3,2,3,2,4,0,0,2,2,2,1] |
Phi over symmetry | [-3,-3,0,1,2,3,0,1,1,3,2,2,1,4,3,1,2,1,-1,0,0] |
Phi of -K | [-3,-2,-1,0,3,3,0,0,1,2,3,-1,2,3,4,1,1,1,1,2,0] |
Phi of K* | [-3,-3,0,1,2,3,0,1,1,3,2,2,1,4,3,1,2,1,-1,0,0] |
Phi of -K* | [-3,-2,-1,0,3,3,1,2,2,3,4,2,0,1,2,0,3,3,1,2,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+t^2+t |
Normalized Jones-Krushkal polynomial | 5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w |
Inner characteristic polynomial | t^6+66t^4+194t^2+1 |
Outer characteristic polynomial | t^7+98t^5+351t^3+9t |
Flat arrow polynomial | -2*K1*K2 - 2*K1*K3 + K1 - 2*K2**2 + K2 + K3 + 2*K4 + 2 |
2-strand cable arrow polynomial | -400*K1**4 + 384*K1**3*K2*K3 + 32*K1**3*K3*K4 - 832*K1**3*K3 - 544*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 160*K1**2*K2*K4 + 3008*K1**2*K2 - 2128*K1**2*K3**2 - 128*K1**2*K3*K5 - 96*K1**2*K4**2 - 4144*K1**2 + 64*K1*K2**3*K3 - 736*K1*K2**2*K3 + 384*K1*K2*K3**3 + 64*K1*K2*K3*K4**2 - 256*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 5888*K1*K2*K3 - 32*K1*K3**2*K5 + 2632*K1*K3*K4 + 288*K1*K4*K5 + 16*K1*K5*K6 + 8*K1*K6*K7 - 32*K2**4 - 1520*K2**2*K3**2 - 40*K2**2*K4**2 + 400*K2**2*K4 - 8*K2**2*K6**2 - 2954*K2**2 - 128*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 1224*K2*K3*K5 + 48*K2*K4*K6 + 16*K2*K6*K8 - 320*K3**4 - 144*K3**2*K4**2 + 208*K3**2*K6 - 2512*K3**2 + 120*K3*K4*K7 - 8*K4**4 + 16*K4**2*K8 - 842*K4**2 - 316*K5**2 - 46*K6**2 - 20*K7**2 - 12*K8**2 + 3460 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]] |
If K is slice | False |