Min(phi) over symmetries of the knot is: [-4,-1,-1,1,2,3,1,2,1,4,3,0,1,2,1,1,3,2,-1,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.435'] |
Arrow polynomial of the knot is: -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.58', '6.76', '6.78', '6.90', '6.98', '6.154', '6.161', '6.162', '6.198', '6.280', '6.284', '6.345', '6.417', '6.421', '6.435', '6.511'] |
Outer characteristic polynomial of the knot is: t^7+98t^5+301t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.435'] |
2-strand cable arrow polynomial of the knot is: 128*K1**2*K2*K3**2 + 744*K1**2*K2 - 1664*K1**2*K3**2 - 2108*K1**2 - 608*K1*K2**2*K3 - 480*K1*K2*K3*K4 + 3680*K1*K2*K3 - 32*K1*K3**2*K5 + 2216*K1*K3*K4 + 104*K1*K4*K5 + 56*K1*K5*K6 + 8*K1*K6*K7 - 816*K2**2*K3**2 - 8*K2**2*K4**2 + 696*K2**2*K4 - 8*K2**2*K6**2 - 2218*K2**2 - 32*K2*K3*K4*K5 + 1224*K2*K3*K5 + 24*K2*K4*K6 + 48*K2*K5*K7 + 16*K2*K6*K8 + 16*K3**2*K6 - 2104*K3**2 + 40*K3*K4*K7 + 24*K3*K5*K8 - 870*K4**2 - 404*K5**2 - 46*K6**2 - 40*K7**2 - 18*K8**2 + 2430 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.435'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16926', 'vk6.17169', 'vk6.20220', 'vk6.21516', 'vk6.23320', 'vk6.23615', 'vk6.27420', 'vk6.29032', 'vk6.35358', 'vk6.35782', 'vk6.38833', 'vk6.41028', 'vk6.42839', 'vk6.43119', 'vk6.45598', 'vk6.47359', 'vk6.55086', 'vk6.55338', 'vk6.57059', 'vk6.58185', 'vk6.59485', 'vk6.59775', 'vk6.61580', 'vk6.62754', 'vk6.64932', 'vk6.65140', 'vk6.66681', 'vk6.67521', 'vk6.68225', 'vk6.68368', 'vk6.69332', 'vk6.70085'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U6U2O6U1U4U3U5 |
R3 orbit | {'O1O2O3O4O5U6U2O6U1U4U3U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U1U3U2U5O6U4U6 |
Gauss code of K* | O1O2O3O4U1U5U3U2U4O6O5U6 |
Gauss code of -K* | O1O2O3O4U5O6O5U1U3U2U6U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -2 1 1 4 -1],[ 3 0 1 3 2 4 2],[ 2 -1 0 1 0 2 2],[-1 -3 -1 0 0 2 -1],[-1 -2 0 0 0 1 -1],[-4 -4 -2 -2 -1 0 -4],[ 1 -2 -2 1 1 4 0]] |
Primitive based matrix | [[ 0 4 1 1 -1 -2 -3],[-4 0 -1 -2 -4 -2 -4],[-1 1 0 0 -1 0 -2],[-1 2 0 0 -1 -1 -3],[ 1 4 1 1 0 -2 -2],[ 2 2 0 1 2 0 -1],[ 3 4 2 3 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-4,-1,-1,1,2,3,1,2,4,2,4,0,1,0,2,1,1,3,2,2,1] |
Phi over symmetry | [-4,-1,-1,1,2,3,1,2,1,4,3,0,1,2,1,1,3,2,-1,0,0] |
Phi of -K | [-3,-2,-1,1,1,4,0,0,1,2,3,-1,2,3,4,1,1,1,0,1,2] |
Phi of K* | [-4,-1,-1,1,2,3,1,2,1,4,3,0,1,2,1,1,3,2,-1,0,0] |
Phi of -K* | [-3,-2,-1,1,1,4,1,2,2,3,4,2,0,1,2,1,1,4,0,1,2] |
Symmetry type of based matrix | c |
u-polynomial | -t^4+t^3+t^2-t |
Normalized Jones-Krushkal polynomial | 3z^2+16z+21 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+5w^3z^2-6w^3z+22w^2z+21w |
Inner characteristic polynomial | t^6+66t^4+172t^2+1 |
Outer characteristic polynomial | t^7+98t^5+301t^3+8t |
Flat arrow polynomial | -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1 |
2-strand cable arrow polynomial | 128*K1**2*K2*K3**2 + 744*K1**2*K2 - 1664*K1**2*K3**2 - 2108*K1**2 - 608*K1*K2**2*K3 - 480*K1*K2*K3*K4 + 3680*K1*K2*K3 - 32*K1*K3**2*K5 + 2216*K1*K3*K4 + 104*K1*K4*K5 + 56*K1*K5*K6 + 8*K1*K6*K7 - 816*K2**2*K3**2 - 8*K2**2*K4**2 + 696*K2**2*K4 - 8*K2**2*K6**2 - 2218*K2**2 - 32*K2*K3*K4*K5 + 1224*K2*K3*K5 + 24*K2*K4*K6 + 48*K2*K5*K7 + 16*K2*K6*K8 + 16*K3**2*K6 - 2104*K3**2 + 40*K3*K4*K7 + 24*K3*K5*K8 - 870*K4**2 - 404*K5**2 - 46*K6**2 - 40*K7**2 - 18*K8**2 + 2430 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice | False |