Gauss code |
O1O2O3O4O5U6U2O6U1U5U4U3 |
R3 orbit |
{'O1O2O3O4O5U6U2O6U1U5U4U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U2U1U5O6U4U6 |
Gauss code of K* |
O1O2O3O4U1U5U4U3U2O6O5U6 |
Gauss code of -K* |
O1O2O3O4U5O6O5U3U2U1U6U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 2 2 2 -1],[ 3 0 1 4 3 2 2],[ 2 -1 0 2 1 0 2],[-2 -4 -2 0 0 0 -2],[-2 -3 -1 0 0 0 -2],[-2 -2 0 0 0 0 -2],[ 1 -2 -2 2 2 2 0]] |
Primitive based matrix |
[[ 0 2 2 2 -1 -2 -3],[-2 0 0 0 -2 0 -2],[-2 0 0 0 -2 -1 -3],[-2 0 0 0 -2 -2 -4],[ 1 2 2 2 0 -2 -2],[ 2 0 1 2 2 0 -1],[ 3 2 3 4 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-2,1,2,3,0,0,2,0,2,0,2,1,3,2,2,4,2,2,1] |
Phi over symmetry |
[-3,-2,-1,2,2,2,0,0,1,2,3,-1,2,3,4,1,1,1,0,0,0] |
Phi of -K |
[-3,-2,-1,2,2,2,0,0,1,2,3,-1,2,3,4,1,1,1,0,0,0] |
Phi of K* |
[-2,-2,-2,1,2,3,0,0,1,2,1,0,1,3,2,1,4,3,-1,0,0] |
Phi of -K* |
[-3,-2,-1,2,2,2,1,2,2,3,4,2,0,1,2,2,2,2,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
4z+9 |
Enhanced Jones-Krushkal polynomial |
8w^4z-14w^3z+10w^2z+9w |
Inner characteristic polynomial |
t^6+55t^4+180t^2 |
Outer characteristic polynomial |
t^7+81t^5+324t^3 |
Flat arrow polynomial |
-2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + 2*K4 + 1 |
2-strand cable arrow polynomial |
-144*K1**4 + 192*K1**3*K2*K3 - 288*K1**2*K2**2 + 200*K1**2*K2 - 944*K1**2*K3**2 - 860*K1**2 + 2040*K1*K2*K3 + 880*K1*K3*K4 + 104*K1*K4*K5 + 88*K1*K5*K6 + 8*K1*K6*K7 - 752*K2**2*K3**2 - 8*K2**2*K4**2 + 208*K2**2*K4 - 16*K2**2*K5**2 - 16*K2**2*K6**2 - 1214*K2**2 + 1096*K2*K3*K5 + 56*K2*K4*K6 + 24*K2*K5*K7 + 32*K2*K6*K8 - 64*K3**4 + 144*K3**2*K6 - 1236*K3**2 - 404*K4**2 - 460*K5**2 - 138*K6**2 - 12*K7**2 - 12*K8**2 + 1494 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}]] |
If K is slice |
False |