Gauss code |
O1O2O3O4O5U6U3O6U1U5U2U4 |
R3 orbit |
{'O1O2O3O4O5U6U3O6U1U5U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U4U1U5O6U3U6 |
Gauss code of K* |
O1O2O3O4U1U3U5U4U2O6O5U6 |
Gauss code of -K* |
O1O2O3O4U5O6O5U3U1U6U2U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 -1 3 2 -1],[ 3 0 2 1 4 2 2],[ 0 -2 0 0 2 1 -1],[ 1 -1 0 0 1 0 1],[-3 -4 -2 -1 0 0 -3],[-2 -2 -1 0 0 0 -2],[ 1 -2 1 -1 3 2 0]] |
Primitive based matrix |
[[ 0 3 2 0 -1 -1 -3],[-3 0 0 -2 -1 -3 -4],[-2 0 0 -1 0 -2 -2],[ 0 2 1 0 0 -1 -2],[ 1 1 0 0 0 1 -1],[ 1 3 2 1 -1 0 -2],[ 3 4 2 2 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,0,1,1,3,0,2,1,3,4,1,0,2,2,0,1,2,-1,1,2] |
Phi over symmetry |
[-3,-2,0,1,1,3,0,2,1,3,4,1,0,2,2,0,1,2,-1,1,2] |
Phi of -K |
[-3,-1,-1,0,2,3,0,1,1,3,2,1,0,1,1,1,3,3,1,1,1] |
Phi of K* |
[-3,-2,0,1,1,3,1,1,1,3,2,1,1,3,3,0,1,1,-1,0,1] |
Phi of -K* |
[-3,-1,-1,0,2,3,1,2,2,2,4,1,0,0,1,1,2,3,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+25w^2z+35w |
Inner characteristic polynomial |
t^6+50t^4+79t^2+1 |
Outer characteristic polynomial |
t^7+74t^5+140t^3+11t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 - 2*K2**2 + 3*K2 + K3 + K4 + 5 |
2-strand cable arrow polynomial |
-64*K1**6 + 448*K1**4*K2 - 2272*K1**4 + 832*K1**3*K2*K3 - 704*K1**3*K3 - 128*K1**2*K2**4 + 192*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 4656*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 608*K1**2*K2*K4 + 6560*K1**2*K2 - 1696*K1**2*K3**2 - 160*K1**2*K4**2 - 4884*K1**2 + 736*K1*K2**3*K3 - 544*K1*K2**2*K3 - 384*K1*K2**2*K5 + 192*K1*K2*K3**3 + 64*K1*K2*K3*K4**2 - 384*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 8136*K1*K2*K3 - 96*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 32*K1*K3**3*K4 + 2384*K1*K3*K4 + 344*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 96*K2**4*K4 - 608*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 + 64*K2**2*K3**2*K4 - 1072*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 240*K2**2*K4**2 - 32*K2**2*K4*K8 + 1032*K2**2*K4 - 8*K2**2*K6**2 - 4074*K2**2 - 224*K2*K3**2*K4 + 936*K2*K3*K5 + 272*K2*K4*K6 + 8*K2*K6*K8 - 192*K3**4 - 112*K3**2*K4**2 + 192*K3**2*K6 - 2904*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 998*K4**2 - 268*K5**2 - 86*K6**2 - 2*K8**2 + 4638 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |